标签:with open dom als rri ali type ida rom tip
import os import sys import random import math import re import time import numpy as np import cv2 import matplotlib import matplotlib.pyplot as plt from PIL import Image # Root directory of the project ROOT_DIR = os.path.abspath("../../") # Import Mask RCNN sys.path.append(ROOT_DIR) # To find local version of the library from mrcnn.config import Config from mrcnn import utils import mrcnn.model as modellib from mrcnn import visualize from mrcnn.model import log #%matplotlib inline # Directory to save logs and trained model MODEL_DIR = os.path.join(ROOT_DIR, "logs") # Local path to trained weights file COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5") # Download COCO trained weights from Releases if needed if not os.path.exists(COCO_MODEL_PATH): utils.download_trained_weights(COCO_MODEL_PATH) iter_num=0
Configurations
class ShapesConfig(Config): """Configuration for training on the toy shapes dataset. Derives from the base Config class and overrides values specific to the toy shapes dataset. """ # Give the configuration a recognizable name NAME = "shapes" # Train on 1 GPU and 8 images per GPU. We can put multiple images on each # GPU because the images are small. Batch size is 8 (GPUs * images/GPU). GPU_COUNT = 2 IMAGES_PER_GPU = 1 #这里我用了两个GPU # Number of classes (including background) NUM_CLASSES = 1 + 1 # background + 1 shapes # Use small images for faster training. Set the limits of the small side # the large side, and that determines the image shape. IMAGE_MIN_DIM = 1080 IMAGE_MAX_DIM = 1920 # Use smaller anchors because our image and objects are small RPN_ANCHOR_SCALES = (8*6, 16*6, 32*6, 64*6, 128*6) # anchor side in pixels # Reduce training ROIs per image because the images are small and have # few objects. Aim to allow ROI sampling to pick 33% positive ROIs. TRAIN_ROIS_PER_IMAGE = 32 # Use a small epoch since the data is simple STEPS_PER_EPOCH = 100 # use small validation steps since the epoch is small VALIDATION_STEPS = 5 config = ShapesConfig() config.display()
Notebook Preference
def get_ax(rows=1, cols=1, size=8): """Return a Matplotlib Axes array to be used in all visualizations in the notebook. Provide a central point to control graph sizes. Change the default size attribute to control the size of rendered images """ _, ax = plt.subplots(rows, cols, figsize=(size*cols, size*rows)) return ax
Dataset
class DrugDataset(utils.Dataset): #得到该图中有多少个实例(物体) def get_obj_index(self, image): n = np.max(image) return n #解析labelme中得到的yaml文件,从而得到mask每一层对应的实例标签 def from_yaml_get_class(self,image_id): info=self.image_info[image_id] with open(info[‘yaml_path‘]) as f: temp=yaml.load(f.read()) labels=temp[‘label_names‘] del labels[0] return labels #重新写draw_mask def draw_mask(self, num_obj, mask, image): info = self.image_info[image_id] for index in range(num_obj): for i in range(info[‘width‘]): for j in range(info[‘height‘]): at_pixel = image.getpixel((i, j)) if at_pixel == index + 1: mask[j, i, index] =1 return mask #重新写load_shapes,里面包含自己的自己的类别(我的是box、column、package、fruit四类) #并在self.image_info信息中添加了path、mask_path 、yaml_path def load_shapes(self, count, height, width, img_floder, mask_floder, imglist,dataset_root_path): """Generate the requested number of synthetic images. count: number of images to generate. height, width: the size of the generated images. """ # Add classes self.add_class("shapes", 1, "box") for i in range(count): filestr = imglist[i].split(".")[0] filestr = filestr.split("_")[0] mask_path = mask_floder + "/" + filestr + ".png" yaml_path=dataset_root_path+filestr+"rgb_"+"_json/info.yaml" self.add_image("shapes", image_id=i, path=img_floder + "/"+imglist[i], width=width, height=height, mask_path=mask_path,yaml_path=yaml_path) #重写load_mask def load_mask(self, image_id): """Generate instance masks for shapes of the given image ID. """ global iter_num info = self.image_info[image_id] count = 1 # number of object img = Image.open(info[‘mask_path‘]) num_obj = self.get_obj_index(img) mask = np.zeros([info[‘height‘], info[‘width‘], num_obj], dtype=np.uint8) mask = self.draw_mask(num_obj, mask, img) occlusion = np.logical_not(mask[:, :, -1]).astype(np.uint8) for i in range(count - 2, -1, -1): mask[:, :, i] = mask[:, :, i] * occlusion occlusion = np.logical_and(occlusion, np.logical_not(mask[:, :, i])) labels=[] labels=self.from_yaml_get_class(image_id) labels_form=[] for i in range(len(labels)): if labels[i].find("box")!=-1: #print "box" labels_form.append("box") #elif labels[i].find("column")!=-1: #print "column" # labels_form.append("column") #elif labels[i].find("package")!=-1: #print "package" # labels_form.append("package") #elif labels[i].find("fruit")!=-1: #print "fruit" # labels_form.append("fruit") class_ids = np.array([self.class_names.index(s) for s in labels_form]) return mask, class_ids.astype(np.int32)
基础设置
#基础设置 dataset_root_path="/mnt/disk2/zhouqiang/Mask_RCNN/data/train_01_01/" img_floder = dataset_root_path+"rgb" mask_floder = dataset_root_path+"mask" #yaml_floder = dataset_root_path imglist = os.listdir(img_floder) count = len(imglist) width = 1920 height = 1080 #train与val数据集准备 dataset_train = DrugDataset() dataset_train.load_shapes(count, 1080, 1920, img_floder, mask_floder, imglist,dataset_root_path) dataset_train.prepare() dataset_val = DrugDataset() dataset_val.load_shapes(count, 1080, 1920, img_floder, mask_floder, imglist,dataset_root_path) dataset_val.prepare()
Create Model
# Create model in training mode model = modellib.MaskRCNN(mode="training", config=config, model_dir=MODEL_DIR)
# Which weights to start with? init_with = "coco" # imagenet, coco, or last if init_with == "imagenet": model.load_weights(model.get_imagenet_weights(), by_name=True) elif init_with == "coco": # Load weights trained on MS COCO, but skip layers that # are different due to the different number of classes # See README for instructions to download the COCO weights model.load_weights(COCO_MODEL_PATH, by_name=True, exclude=["mrcnn_class_logits", "mrcnn_bbox_fc", "mrcnn_bbox", "mrcnn_mask"]) elif init_with == "last": # Load the last model you trained and continue training model.load_weights(model.find_last(), by_name=True)
# Fine tune all layers # Passing layers="all" trains all layers. You can also # pass a regular expression to select which layers to # train by name pattern. model.train(dataset_train, dataset_val, learning_rate=config.LEARNING_RATE / 10, epochs=50, layers="all")
标签:with open dom als rri ali type ida rom tip
原文地址:https://www.cnblogs.com/BambooEatPanda/p/10449914.html