码迷,mamicode.com
首页 > 其他好文 > 详细

MaskRCNN 奔跑自己的数据

时间:2019-02-28 14:52:47      阅读:603      评论:0      收藏:0      [点我收藏+]

标签:with open   dom   als   rri   ali   type   ida   rom   tip   

import os
import sys
import random
import math
import re
import time
import numpy as np
import cv2
import matplotlib
import matplotlib.pyplot as plt
from PIL import Image


# Root directory of the project
ROOT_DIR = os.path.abspath("../../")

# Import Mask RCNN
sys.path.append(ROOT_DIR)  # To find local version of the library
from mrcnn.config import Config
from mrcnn import utils
import mrcnn.model as modellib
from mrcnn import visualize
from mrcnn.model import log

#%matplotlib inline 

# Directory to save logs and trained model
MODEL_DIR = os.path.join(ROOT_DIR, "logs")

# Local path to trained weights file
COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5")
# Download COCO trained weights from Releases if needed
if not os.path.exists(COCO_MODEL_PATH):
    utils.download_trained_weights(COCO_MODEL_PATH)

iter_num=0

  

Configurations

class ShapesConfig(Config):
    """Configuration for training on the toy shapes dataset.
    Derives from the base Config class and overrides values specific
    to the toy shapes dataset.
    """
    # Give the configuration a recognizable name
    NAME = "shapes"

    # Train on 1 GPU and 8 images per GPU. We can put multiple images on each
    # GPU because the images are small. Batch size is 8 (GPUs * images/GPU).
    GPU_COUNT = 2
    IMAGES_PER_GPU = 1 #这里我用了两个GPU

    # Number of classes (including background)
    NUM_CLASSES = 1 + 1  # background + 1 shapes

    # Use small images for faster training. Set the limits of the small side
    # the large side, and that determines the image shape.
    IMAGE_MIN_DIM = 1080
    IMAGE_MAX_DIM = 1920

    # Use smaller anchors because our image and objects are small
    RPN_ANCHOR_SCALES = (8*6, 16*6, 32*6, 64*6, 128*6)  # anchor side in pixels

    # Reduce training ROIs per image because the images are small and have
    # few objects. Aim to allow ROI sampling to pick 33% positive ROIs.
    TRAIN_ROIS_PER_IMAGE = 32

    # Use a small epoch since the data is simple
    STEPS_PER_EPOCH = 100

    # use small validation steps since the epoch is small
    VALIDATION_STEPS = 5
    
config = ShapesConfig()
config.display()

  Notebook Preference

def get_ax(rows=1, cols=1, size=8):
    """Return a Matplotlib Axes array to be used in
    all visualizations in the notebook. Provide a
    central point to control graph sizes.
    
    Change the default size attribute to control the size
    of rendered images
    """
    _, ax = plt.subplots(rows, cols, figsize=(size*cols, size*rows))
    return ax

  Dataset

class DrugDataset(utils.Dataset):
    
    #得到该图中有多少个实例(物体)
    def get_obj_index(self, image):
        n = np.max(image)
        return n
    #解析labelme中得到的yaml文件,从而得到mask每一层对应的实例标签
    def from_yaml_get_class(self,image_id):
        info=self.image_info[image_id]
        with open(info[‘yaml_path‘]) as f:
            temp=yaml.load(f.read())
            labels=temp[‘label_names‘]
            del labels[0]
        return labels
    #重新写draw_mask
    def draw_mask(self, num_obj, mask, image):
        info = self.image_info[image_id]
        for index in range(num_obj):
            for i in range(info[‘width‘]):
                for j in range(info[‘height‘]):
                    at_pixel = image.getpixel((i, j))
                    if at_pixel == index + 1:
                        mask[j, i, index] =1
        return mask
    #重新写load_shapes,里面包含自己的自己的类别(我的是box、column、package、fruit四类)
    #并在self.image_info信息中添加了path、mask_path 、yaml_path
    def load_shapes(self, count, height, width, img_floder, mask_floder, imglist,dataset_root_path):
        """Generate the requested number of synthetic images.
        count: number of images to generate.
        height, width: the size of the generated images.
        """
        # Add classes
        self.add_class("shapes", 1, "box")
        
        for i in range(count):
            filestr = imglist[i].split(".")[0]
            filestr = filestr.split("_")[0]
            mask_path = mask_floder + "/" + filestr + ".png"
            yaml_path=dataset_root_path+filestr+"rgb_"+"_json/info.yaml"
            self.add_image("shapes", image_id=i, path=img_floder + "/"+imglist[i],
                           width=width, height=height, mask_path=mask_path,yaml_path=yaml_path)
    #重写load_mask
    def load_mask(self, image_id):
        """Generate instance masks for shapes of the given image ID.
        """
        global iter_num
        info = self.image_info[image_id]
        count = 1  # number of object
        img = Image.open(info[‘mask_path‘])
        num_obj = self.get_obj_index(img)
        mask = np.zeros([info[‘height‘], info[‘width‘], num_obj], dtype=np.uint8)
        mask = self.draw_mask(num_obj, mask, img)
        occlusion = np.logical_not(mask[:, :, -1]).astype(np.uint8)
        for i in range(count - 2, -1, -1):
            mask[:, :, i] = mask[:, :, i] * occlusion
            occlusion = np.logical_and(occlusion, np.logical_not(mask[:, :, i]))
        labels=[]
        labels=self.from_yaml_get_class(image_id)
        labels_form=[]
        for i in range(len(labels)):
            if labels[i].find("box")!=-1:
                #print "box"
                labels_form.append("box")
            #elif labels[i].find("column")!=-1:
                #print "column"
             #   labels_form.append("column")
            #elif labels[i].find("package")!=-1:
                #print "package"
             #   labels_form.append("package")
            #elif labels[i].find("fruit")!=-1:
                #print "fruit"
             #   labels_form.append("fruit")
        class_ids = np.array([self.class_names.index(s) for s in labels_form])
        return mask, class_ids.astype(np.int32)

  基础设置

#基础设置
dataset_root_path="/mnt/disk2/zhouqiang/Mask_RCNN/data/train_01_01/"
img_floder = dataset_root_path+"rgb"
mask_floder = dataset_root_path+"mask"
#yaml_floder = dataset_root_path
imglist = os.listdir(img_floder)
count = len(imglist)
width = 1920
height = 1080

#train与val数据集准备
dataset_train = DrugDataset()
dataset_train.load_shapes(count, 1080, 1920, img_floder, mask_floder, imglist,dataset_root_path)
dataset_train.prepare()

dataset_val = DrugDataset()
dataset_val.load_shapes(count, 1080, 1920, img_floder, mask_floder, imglist,dataset_root_path)
dataset_val.prepare()

  Create Model

# Create model in training mode
model = modellib.MaskRCNN(mode="training", config=config,
                          model_dir=MODEL_DIR)

 

# Which weights to start with?
init_with = "coco"  # imagenet, coco, or last

if init_with == "imagenet":
    model.load_weights(model.get_imagenet_weights(), by_name=True)
elif init_with == "coco":
    # Load weights trained on MS COCO, but skip layers that
    # are different due to the different number of classes
    # See README for instructions to download the COCO weights
    model.load_weights(COCO_MODEL_PATH, by_name=True,
                       exclude=["mrcnn_class_logits", "mrcnn_bbox_fc", 
                                "mrcnn_bbox", "mrcnn_mask"])
elif init_with == "last":
    # Load the last model you trained and continue training
    model.load_weights(model.find_last(), by_name=True)

  

# Fine tune all layers
# Passing layers="all" trains all layers. You can also 
# pass a regular expression to select which layers to
# train by name pattern.
model.train(dataset_train, dataset_val, 
            learning_rate=config.LEARNING_RATE / 10,
            epochs=50, 
            layers="all")

  

 

MaskRCNN 奔跑自己的数据

标签:with open   dom   als   rri   ali   type   ida   rom   tip   

原文地址:https://www.cnblogs.com/BambooEatPanda/p/10449914.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!