题目链接:POJ 3176 Cow Bowling
Cow Bowling
Description
The cows don‘t use actual bowling balls when they go bowling. They each take a number (in the range 0..99), though, and line up in a standard bowling-pin-like triangle like this:
7 3 8 8 1 0 2 7 4 4 4 5 2 6 5Then the other cows traverse the triangle starting from its tip and moving "down" to one of the two diagonally adjacent cows until the "bottom" row is reached. The cow‘s score is the sum of the numbers of the cows visited along the way. The cow with the highest score wins that frame. Given a triangle with N (1 <= N <= 350) rows, determine the highest possible sum achievable. Input
Line 1: A single integer, N
Lines 2..N+1: Line i+1 contains i space-separated integers that represent row i of the triangle. Output
Line 1: The largest sum achievable using the traversal rules
Sample Input 5 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5 Sample Output 30 Hint
Explanation of the sample:
7 * 3 8 * 8 1 0 * 2 7 4 4 * 4 5 2 6 5The highest score is achievable by traversing the cows as shown above. Source |
从数塔的第一层走到最底层,但只能沿对角线走,求路径上的数的和的最大值。
分析:
从最底层向上考虑,路径上的和的大小取决于直接取决于下面两个数的大小。因而采用自顶向上方法,逐步向上走,走到最顶层,每次都选择最大的和,这样最后的结果就保存在了最顶层。
状态转移方程:dp[i][j] = max(dp[i+1][j], dp[i+1][j+1])+A[i][j];
代码:
#include <iostream> #include <cstdio> #include <cstring> using namespace std; const int MAX_N = 400; int dp[MAX_N][MAX_N]; int N, A[MAX_N][MAX_N]; void solve() { memset(dp, 0, sizeof(dp)); for(int i = 1; i <= N; i++) dp[N][i] = A[N][i]; for(int i = N-1; i >= 1; i--) for(int j = 1; j <= i; j++) dp[i][j] = A[i][j]+max(dp[i+1][j], dp[i+1][j+1]); printf("%d\n", dp[1][1]); } int main() { while(~scanf("%d", &N)) { for(int i = 1; i <= N; i++) for(int j = 1; j <= i; j++) scanf("%d", &A[i][j]); solve(); } return 0; }
POJ 3176 Cow Bowling 保龄球 数塔问题 DP
原文地址:http://blog.csdn.net/u011439796/article/details/40210651