码迷,mamicode.com
首页 > 其他好文 > 详细

CF666E. Forensic Examination

时间:2019-03-05 21:11:47      阅读:181      评论:0      收藏:0      [点我收藏+]

标签:get   维护   out   hit   结果   --   html   tom   event   

题意:

给你一个串SSS以及一个字符串数组T[1..m]q次询问,每次问S的子串S[pl?..pr?]在T[l..r]中的哪个串里的出现次数最多,并输出出现次数。

如有多解输出最靠前的那一个。

解:

什么奇葩排版......

对T建广义SAM,线段树合并维护每个节点有哪些串。写法稍微注意一下。

记录下s在t上匹配的时候每个前缀走到哪个位置。然后树上倍增找到符合条件的节点,线段树上查询。

如果查到0或者根本没那么长的匹配长度,输出"L 0"

 

技术图片
  1 #include <iostream>
  2 #include <cstdio>
  3 #include <cstring>
  4 #include <string>
  5 #include <algorithm>
  6 
  7 const int N = 500010, M = 20000010;
  8 
  9 struct Edge {
 10     int nex, v;
 11 }edge[N * 2]; int tp;
 12 
 13 char str[N];
 14 int tr[N * 2][26], len[N * 2], fail[N * 2], tot = 1, n, m, L, R, e[N * 2], cnt;
 15 std::string ss[N];
 16 int large[M], ans[M], rt[N * 2], ls[M], rs[M], pos[N], lenth[N], fa[N * 2][20], pw[N * 2];
 17 
 18 inline void add(int x, int y) {
 19     tp++;
 20     edge[tp].v = y;
 21     edge[tp].nex = e[x];
 22     e[x] = tp;
 23     return;
 24 }
 25 
 26 inline void Max(int &a, int b) {
 27     if(!b) return;
 28     if(large[b] > large[a] || (large[b] == large[a] && ans[a] > ans[b])) {
 29         a = b;
 30     }
 31     return;
 32 }
 33 
 34 inline void pushup(int o) {
 35     large[o] = std::max(large[ls[o]], large[rs[o]]);
 36     if(large[ls[o]] > large[rs[o]]) {
 37         ans[o] = ans[ls[o]];
 38     }
 39     else if(large[rs[o]] > large[ls[o]]) {
 40         ans[o] = ans[rs[o]];
 41     }
 42     else ans[o] = std::min(ans[ls[o]], ans[rs[o]]);
 43     return;
 44 }
 45 
 46 inline void insert(int p, int l, int r, int &o) {
 47     if(!o) o = ++cnt;
 48     if(l == r) {
 49         ans[o] = r;
 50         large[o]++;
 51         return;
 52     }
 53     int mid = (l + r) >> 1;
 54     if(p <= mid) insert(p, l, mid, ls[o]);
 55     else insert(p, mid + 1, r, rs[o]);
 56     pushup(o);
 57     return;
 58 }
 59 
 60 inline int merge(int x, int y, int l, int r) {
 61     if(!x || !y) return x | y;
 62     if(l == r) {
 63         int o = ++cnt;
 64         large[o] = large[x] + large[y];
 65         ans[o] = r;
 66         return o;
 67     }
 68     int o = ++cnt, mid = (l + r) >> 1;
 69     ls[o] = merge(ls[x], ls[y], l, mid);
 70     rs[o] = merge(rs[x], rs[y], mid + 1, r);
 71     pushup(o);
 72     return o;
 73 }
 74 
 75 void out(int l, int r, int x) {
 76     if(!x) printf("!x");
 77     printf("(%d [%d %d] lar=%d ans=%d) ", x, l, r, large[x], ans[x]);
 78     if(l == r) {
 79         printf("%d ", r);
 80         return;
 81     }
 82     int mid = (l + r) >> 1;
 83     if(ls[x]) out(l, mid, ls[x]);
 84     if(rs[x]) out(mid + 1, r, rs[x]);
 85     return;
 86 }
 87 
 88 void DFS(int x) {
 89     for(int i = e[x]; i; i = edge[i].nex) {
 90         int y = edge[i].v;
 91         DFS(y);
 92         rt[x] = merge(rt[x], rt[y], 1, m);
 93     }
 94     return;
 95 }
 96 
 97 inline int ask(int l, int r, int o) { /// return a Node
 98     if(!o) return 0;
 99     if(L <= l && r <= R) return o;
100     int mid = (l + r) >> 1, Ans = 0;
101     if(L <= mid) Max(Ans, ask(l, mid, ls[o]));
102     if(mid < R) Max(Ans, ask(mid + 1, r, rs[o]));
103     return Ans;
104 }
105 
106 inline int split(int p, int f) {
107     int Q = tr[p][f], nQ = ++tot;
108     len[nQ] = len[p] + 1;
109     fail[nQ] = fail[Q];
110     fail[Q] = nQ;
111     memcpy(tr[nQ], tr[Q], sizeof(tr[Q]));
112     while(tr[p][f] == Q) {
113         tr[p][f] = nQ;
114         p = fail[p];
115     }
116     return nQ;
117 }
118 
119 inline int insert(char c, int p, int id) {
120     int f = c - a, np;
121     if(tr[p][f]) {
122         int Q = tr[p][f];
123         if(len[Q] == len[p] + 1) {
124             np = Q;
125         }
126         else np = split(p, f);
127         insert(id, 1, m, rt[np]);
128         return np;
129     }
130     np = ++tot;
131     len[np] = len[p] + 1;
132     while(p && !tr[p][f]) {
133         tr[p][f] = np;
134         p = fail[p];
135     }
136     if(!p) {
137         fail[np] = 1;
138     }
139     else {
140         int Q = tr[p][f];
141         if(len[Q] == len[p] + 1) {
142             fail[np] = Q;
143         }
144         else {
145             fail[np] = split(p, f);
146         }
147     }
148     insert(id, 1, m, rt[np]);
149     return np;
150 }
151 
152 inline int getpos(int l, int r) {
153     int p = pos[r], Len = r - l + 1;
154     if(lenth[r] < Len) return 0;
155     int t = pw[tot];
156     while(t >= 0) {
157         if(len[fa[p][t]] >= Len) {
158             p = fa[p][t];
159         }
160         t--;
161     }
162     return p;
163 }
164 
165 int main() {
166     scanf("%s", str + 1);
167     n = strlen(str + 1);
168     scanf("%d", &m);
169     for(int i = 1; i <= m; i++) {
170         std::cin >> ss[i];
171         int k = ss[i].size(), p = 1;
172         for(int j = 0; j < k; j++) {
173             p = insert(ss[i][j], p, i);
174         }
175     }
176     /// insert OVER
177     for(int i = 2; i <= tot; i++) {
178         add(fail[i], i);
179         fa[i][0] = fail[i];
180     }
181     DFS(1);
182     for(int i = 2; i <= tot; i++) pw[i] = pw[i >> 1] + 1;
183     for(int j = 1; j <= pw[tot]; j++) {
184         for(int i = 1; i <= tot; i++) {
185             fa[i][j] = fa[fa[i][j - 1]][j - 1];
186         }
187     }
188     int Len = 0, p = 1;
189     for(int i = 1; i <= n; i++) {
190         int ff = str[i] - a;
191         while(p && !tr[p][ff]) {
192             p = fail[p];
193             Len = len[p];
194         }
195         if(!p) {
196             p = 1;
197         }
198         else {
199             p = tr[p][ff];
200             Len++;
201         }
202         pos[i] = p;
203         lenth[i] = Len;
204     }
205     /// prework OVER
206     int q, l, r;
207     scanf("%d", &q);
208     for(int i = 1; i <= q; i++) {
209         scanf("%d%d%d%d", &L, &R, &l, &r);
210         p = getpos(l, r);
211         if(!p) printf("%d 0\n", L);
212         else {
213             int Ans = ask(1, m, rt[p]);
214             if(!Ans) printf("%d 0\n", L);
215             else printf("%d %d\n", ans[Ans], large[Ans]);
216         }
217     }
218     return 0;
219 }
AC代码

 

我调了一晚上差点气疯了,结果是因为tr数组第二维只开了2...这个数组脱离我的控制...

 

CF666E. Forensic Examination

标签:get   维护   out   hit   结果   --   html   tom   event   

原文地址:https://www.cnblogs.com/huyufeifei/p/10479589.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!