标签:read rop for each 拆分 RoCE into drop port
cifar神经网络的代码说明:
数据主要分为三部分:
第一部分:数据的准备
第二部分:神经网络模型的构造,返回loss和梯度值
第三部分:将数据与模型输入到函数中,用于进行模型的训练,同时进行验证集的预测,来判断验证集的预测结果,保留最好的验证集结果的参数组合
第一部分:数据的准备
第一步:构造列表,使用with open() as f: pickle.load进行数据的载入, 使用.reshape(1000, 3, 32, 32).transpose(0, 3, 1, 2).astype(‘float‘)
第二步:使用np.concatenate()将列表进行串接, 选出5000个数据集做为训练集,选择5000到5500个数据做为验证集,从测试集的数据中挑选出500个数据作为测试集
第三步:将返回的训练样本和测试样本进行拆分,从训练样本中取出5000个数据作为训练集,500个样本作为验证集,从测试数据中取出500个数据作为测试集
第四步:将图像样本减去均值), 即- np.mean(train_X, axis=0) ,并使用transpose()将样本数据的维度进行变换
第五步:返回训练样本,验证集,测试集的字典
代码:data_utils.py
import pickle as pickle import numpy as np import os import importlib import sys importlib.reload(sys) #from scipy.misc import imread def load_CIFAR_batch(filename): """ load single batch of cifar """ # 第一步:使用pick.load读取数据,使用.reshape进行矩阵变化和.tanspose进行维度变化 with open(filename, ‘rb‘) as f: datadict = pickle.load(f, encoding=‘latin1‘) X = datadict[‘data‘] Y = datadict[‘labels‘] X = X.reshape(10000, 3, 32, 32).transpose(0,2,3,1).astype("float") Y = np.array(Y) return X, Y def load_CIFAR10(ROOT): """ load all of cifar """ xs = [] ys = [] # 第二步:使用列表数据添加,并使用np.concatenate进行串接,去除矩阵的维度 for b in range(1,2): f = os.path.join(ROOT, ‘data_batch_%d‘ % (b, )) X, Y = load_CIFAR_batch(f) xs.append(X) ys.append(Y) # 将数据进行串接 Xtr = np.concatenate(xs) Ytr = np.concatenate(ys) del X, Y # 加载测试数据 Xte, Yte = load_CIFAR_batch(os.path.join(ROOT, ‘test_batch‘)) return Xtr, Ytr, Xte, Yte def get_CIFAR10_data(num_training=5000, num_validation=500, num_test=500): """ Load the CIFAR-10 dataset from disk and perform preprocessing to prepare it for classifiers. These are the same steps as we used for the SVM, but condensed to a single function. """ # Load the raw CIFAR-10 data cifar10_dir = ‘D://BaiduNetdiskDownload//神经网络入门基础(PPT,代码)//绁炵粡缃戠粶鍏ラ棬鍩虹锛圥PT锛屼唬鐮侊級//cifar-10-batches-py//‘ X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir) print(X_train.shape) # Subsample the data # 第三步:将返回训练样本和测试样本,进行数据的拆分,分出5000个训练集,验证集和测试集 mask = range(num_training, num_training + num_validation) X_val = X_train[mask] y_val = y_train[mask] mask = range(num_training) X_train = X_train[mask] y_train = y_train[mask] mask = range(num_test) X_test = X_test[mask] y_test = y_test[mask] # Normalize the data: subtract the mean image # 第四步:减去图片的均值,将训练集,验证集和测试集 mean_image = np.mean(X_train, axis=0) X_train -= mean_image X_val -= mean_image X_test -= mean_image # Transpose so that channels come first X_train = X_train.transpose(0, 3, 1, 2).copy() X_val = X_val.transpose(0, 3, 1, 2).copy() X_test = X_test.transpose(0, 3, 1, 2).copy() # Package data into a dictionary # 第五步:返回训练集,验证集和测试集的字典 return { ‘X_train‘: X_train, ‘y_train‘: y_train, ‘X_val‘: X_val, ‘y_val‘: y_val, ‘X_test‘: X_test, ‘y_test‘: y_test, }
第二部分:神经网络模型的构造,用于计算损失值和梯度
第一步:def __iniit(数据维度,隐藏层维度,输出层维度,权重初始值范围,正则化惩罚项初始化)
第二步:构造初始化的self.params用于存放权重参数,初始化权重参数w1,b1, w2, b2
第三步:构造loss函数,前向传播求得loss,反向传播计算各个权重的梯度值
前向传播:
第一步:对输入的X进行第一次的前向传播,包括x * w + b 线性变化和relu激活层函数np.maximum(0, x)
第二步:对第一层的输出结果,在第二层进行线性变化x * w + b, 获得各个类别得分
第三步:如果没有标签,作为预测结果,直接返回得分值
第四步:计算类别的概率值softmax, e^(x-max(x)) / ∑( e^(x-max(x)) ),使用np.sum(-np.log(prob([np.arange(N), y]))) 来表示交叉熵损失函数
第五步:求得softmax / dx 的值为, softmax - 1, 即prob[np.arange(x), y] - 1, 将损失值和softmax对应于x的梯度进行返回
反向传播:
第一步:对于前向传播求得的softmax/dx获得的导数值dout,将其回传到第二层,求得dx(用于第一层的回传),dw2, db2 = dout * w(第二层的权重w), dout * x(第二层输入), np.sum(dout, axis=0)
第二步:对于第二层回传的dx,进行第一层的回传,第一层进行了两步操作,第一步是线性变化,第二步是relu激活层,先对激活层进行回传,对于激活层的回传,输入值大于0的,回传的结果不变,输入值小于0的,回传的结果为0,即dx[x<0] = 0 , 将回传的结果用于线性dx, dw1, db1与上述步骤相同
第三步:将求得的dw2,db2,dw1, db1保存在grads中,将loss和梯度值进行返回
主代码:fc_net.py
from layer_utils import * import numpy as np class TwoLayerNet(object): # 第一步:构造初始化超参数,在书写代码的时候可以使用 def __init__(self, input_dim=3*32*32, hidden_dim=100, num_classes=10, weight_scale=1e-3, reg=0.0): """ Initialize a new network. Inputs: - input_dim: An integer giving the size of the input - hidden_dim: An integer giving the size of the hidden layer - num_classes: An integer giving the number of classes to classify - dropout: Scalar between 0 and 1 giving dropout strength. - weight_scale: Scalar giving the standard deviation for random initialization of the weights. - reg: Scalar giving L2 regularization strength. """ # 第二步:构造权重字典,并且进行w1,b1,w2,b2的权重初始化 self.params = {} self.reg = reg self.params[‘W1‘] = weight_scale * np.random.randn(input_dim, hidden_dim) self.params[‘b1‘] = np.zeros((1, hidden_dim)) self.params[‘W2‘] = weight_scale * np.random.randn(hidden_dim, num_classes) self.params[‘b2‘] = np.zeros((1, num_classes)) # 第三步:构造loss函数用于进行前向传播和反向传播,返回loss和权重梯度grads def loss(self, X, y=None): """ Compute loss and gradient for a minibatch of data. Inputs: - X: Array of input data of shape (N, d_1, ..., d_k) - y: Array of labels, of shape (N,). y[i] gives the label for X[i]. Returns: If y is None, then run a test-time forward pass of the model and return: - scores: Array of shape (N, C) giving classification scores, where scores[i, c] is the classification score for X[i] and class c. If y is not None, then run a training-time forward and backward pass and return a tuple of: - loss: Scalar value giving the loss - grads: Dictionary with the same keys as self.params, mapping parameter names to gradients of the loss with respect to those parameters. """ # 前向传播,计算得分和损失值 scores = None N = X.shape[0] # Unpack variables from the params dictionary # 权重参数w和b, # 获得当前的参数值 W1, b1 = self.params[‘W1‘], self.params[‘b1‘] W2, b2 = self.params[‘W2‘], self.params[‘b2‘] # 第一步:第一层神经网络进行线性变化和relu变化 第一层的输出结果 h1, cache1 = affine_relu_forward(X, W1, b1) # 第二步:第二层神经网络进行线性变化 out, cache2 = affine_forward(h1, W2, b2) scores = out # (N,C) # 第三步:如果没有labels,直接返回得分值作为预测结果 if y is None: return scores # 第四步:计算损失值和softmax的反向传播的结果 loss, grads = 0, {} data_loss, dscores = softmax_loss(scores, y) # 加上L2正则化惩罚项 reg_loss = 0.5 * self.reg * np.sum(W1*W1) + 0.5 * self.reg * np.sum(W2*W2) loss = data_loss + reg_loss # 反向传播,用于计算梯度值 # 第一步:计算传到第二层的反向传播的结果,即dw2和db2 dh1, dW2, db2 = affine_backward(dscores, cache2) # 第二步:计算relu的反向传播以及x*w + b 反向传播的结果 dX, dW1, db1 = affine_relu_backward(dh1, cache1) # Add the regularization gradient contribution # 加入正则化求导的梯度值dw2 和 dw1 dW2 += self.reg * W2 dW1 += self.reg * W1 # 第三步:将梯度值加入到grads的字典中, 返回损失值和grads梯度值 grads[‘W1‘] = dW1 grads[‘b1‘] = db1 grads[‘W2‘] = dW2 grads[‘b2‘] = db2 return loss, grads
调用代码:layer_utils.py
from layers import * def affine_relu_forward(x, w, b): """ Convenience layer that perorms an affine transform followed by a ReLU Inputs: - x: Input to the affine layer - w, b: Weights for the affine layer Returns a tuple of: - out: Output from the ReLU - cache: Object to give to the backward pass """ a, fc_cache = affine_forward(x, w, b) out, relu_cache = relu_forward(a) cache = (fc_cache, relu_cache) return out, cache def affine_relu_backward(dout, cache): """ Backward pass for the affine-relu convenience layer """ fc_cache, relu_cache = cache da = relu_backward(dout, relu_cache) dx, dw, db = affine_backward(da, fc_cache) return dx, dw, db pass def conv_relu_forward(x, w, b, conv_param): """ A convenience layer that performs a convolution followed by a ReLU. Inputs: - x: Input to the convolutional layer - w, b, conv_param: Weights and parameters for the convolutional layer Returns a tuple of: - out: Output from the ReLU - cache: Object to give to the backward pass """ a, conv_cache = conv_forward_fast(x, w, b, conv_param) out, relu_cache = relu_forward(a) cache = (conv_cache, relu_cache) return out, cache def conv_relu_backward(dout, cache): """ Backward pass for the conv-relu convenience layer. """ conv_cache, relu_cache = cache da = relu_backward(dout, relu_cache) dx, dw, db = conv_backward_fast(da, conv_cache) return dx, dw, db def conv_relu_pool_forward(x, w, b, conv_param, pool_param): """ Convenience layer that performs a convolution, a ReLU, and a pool. Inputs: - x: Input to the convolutional layer - w, b, conv_param: Weights and parameters for the convolutional layer - pool_param: Parameters for the pooling layer Returns a tuple of: - out: Output from the pooling layer - cache: Object to give to the backward pass """ a, conv_cache = conv_forward_fast(x, w, b, conv_param) s, relu_cache = relu_forward(a) out, pool_cache = max_pool_forward_fast(s, pool_param) cache = (conv_cache, relu_cache, pool_cache) return out, cache def conv_relu_pool_backward(dout, cache): """ Backward pass for the conv-relu-pool convenience layer """ conv_cache, relu_cache, pool_cache = cache ds = max_pool_backward_fast(dout, pool_cache) da = relu_backward(ds, relu_cache) dx, dw, db = conv_backward_fast(da, conv_cache) return dx, dw, db
调用代码:layers
import numpy as np def affine_forward(x, w, b): """ Computes the forward pass for an affine (fully-connected) layer. The input x has shape (N, d_1, ..., d_k) and contains a minibatch of N examples, where each example x[i] has shape (d_1, ..., d_k). We will reshape each input into a vector of dimension D = d_1 * ... * d_k, and then transform it to an output vector of dimension M. Inputs: - x: A numpy array containing input data, of shape (N, d_1, ..., d_k) - w: A numpy array of weights, of shape (D, M) - b: A numpy array of biases, of shape (M,) Returns a tuple of: - out: output, of shape (N, M) - cache: (x, w, b) """ out = None # Reshape x into rows N = x.shape[0] x_row = x.reshape(N, -1) # (N,D) out = np.dot(x_row, w) + b # (N,M) cache = (x, w, b) return out, cache def affine_backward(dout, cache): """ Computes the backward pass for an affine layer. Inputs: - dout: Upstream derivative, of shape (N, M) - cache: Tuple of: - x: Input data, of shape (N, d_1, ... d_k) - w: Weights, of shape (D, M) Returns a tuple of: - dx: Gradient with respect to x, of shape (N, d1, ..., d_k) - dw: Gradient with respect to w, of shape (D, M) - db: Gradient with respect to b, of shape (M,) """ x, w, b = cache dx, dw, db = None, None, None dx = np.dot(dout, w.T) # (N,D) dx = np.reshape(dx, x.shape) # (N,d1,...,d_k) x_row = x.reshape(x.shape[0], -1) # (N,D) dw = np.dot(x_row.T, dout) # (D,M) db = np.sum(dout, axis=0, keepdims=True) # (1,M) return dx, dw, db def relu_forward(x): """ Computes the forward pass for a layer of rectified linear units (ReLUs). Input: - x: Inputs, of any shape Returns a tuple of: - out: Output, of the same shape as x - cache: x """ out = None out = ReLU(x) cache = x return out, cache def relu_backward(dout, cache): """ Computes the backward pass for a layer of rectified linear units (ReLUs). Input: - dout: Upstream derivatives, of any shape - cache: Input x, of same shape as dout Returns: - dx: Gradient with respect to x """ dx, x = None, cache dx = dout dx[x <= 0] = 0 return dx def svm_loss(x, y): """ Computes the loss and gradient using for multiclass SVM classification. Inputs: - x: Input data, of shape (N, C) where x[i, j] is the score for the jth class for the ith input. - y: Vector of labels, of shape (N,) where y[i] is the label for x[i] and 0 <= y[i] < C Returns a tuple of: - loss: Scalar giving the loss - dx: Gradient of the loss with respect to x """ N = x.shape[0] correct_class_scores = x[np.arange(N), y] margins = np.maximum(0, x - correct_class_scores[:, np.newaxis] + 1.0) margins[np.arange(N), y] = 0 loss = np.sum(margins) / N num_pos = np.sum(margins > 0, axis=1) dx = np.zeros_like(x) dx[margins > 0] = 1 dx[np.arange(N), y] -= num_pos dx /= N return loss, dx def softmax_loss(x, y): """ Computes the loss and gradient for softmax classification. Inputs: - x: Input data, of shape (N, C) where x[i, j] is the score for the jth class for the ith input. - y: Vector of labels, of shape (N,) where y[i] is the label for x[i] and 0 <= y[i] < C Returns a tuple of: - loss: Scalar giving the loss - dx: Gradient of the loss with respect to x """ # 计算概率值 probs = np.exp(x - np.max(x, axis=1, keepdims=True)) probs /= np.sum(probs, axis=1, keepdims=True) N = x.shape[0] # 计算损失值函数 loss = -np.sum(np.log(probs[np.arange(N), y])) / N # 计算softmax回传即dsoftmax / dx 的结果 dx = probs.copy() dx[np.arange(N), y] -= 1 dx /= N return loss, dx def ReLU(x): """ReLU non-linearity.""" return np.maximum(0, x)
标签:read rop for each 拆分 RoCE into drop port
原文地址:https://www.cnblogs.com/my-love-is-python/p/10487003.html