1.最开始时,只有初始点处的墙被拆掉
2、随机数randnum=2,开始向左边拆墙,由于(4,2)为0(有墙),可以拆,于是拆掉(4,2)、(4,3)位置的墙,则结果如下:
3、接着产生随机数randnum=1,开始向下拆墙,由于(6,2)为0(有墙),可以拆,于是拆掉(5,2)、(6,2)位置的墙,结果如下:
4、继续产生随机数randnum=0,开始向上拆墙,由于(4,2)为1没有墙,不可以拆,于是重新产生随机数,结果与上一张图一样:
5、继续产生随机数randnum=3,开始向右拆墙,由于(6,4)为0有墙,可以拆,于是拆掉(6,3)、(6,4)位置的墙,结果如下:
按照上述步骤重复下去,最终得到一个可能的迷宫矩阵如下:
#include<iostream> #include<ctime> #include<vector> #define M 9//迷宫的行 #define N 9//迷宫的列 //构造迷宫类型// using namespace std; class MazeStack;//申明该类 class Maze//定义迷宫节点信息。 { public: int i; int j; int state; }; class MazeMat { Maze matrix[M][N];//迷宫矩阵 vector<Maze> EntryPath;//从初始点到入口的路径 vector<Maze> ExitPath;//从初始点到出口的路径 vector<Maze> FinalPath;//从入口到出口的路径 MazeStack *mazeStack;//定义栈 public: void initMaze();//初始化迷宫矩阵 void createMaze();//产生迷宫矩阵 void displayMaze();//显示迷宫矩阵 void FindWay();//寻找入口到出口的路径 }; //////////////////2、Maze.cpp
#include"MazeStack.h" using namespace std; void MazeMat::initMaze()//初始化迷宫矩阵 { for(int i=0;i<M;i++) for(int j=0;j<N;j++) { matrix[i][j].i=i; matrix[i][j].j=j; matrix[i][j].state=0;//初始化迷宫矩阵元素为0,即全为墙 } mazeStack=new MazeStack(); EntryPath.clear();//初始化各个路径 ExitPath.clear(); FinalPath.clear(); } void MazeMat::createMaze()//产生迷宫矩阵,中间也记录了从初始点到入口、出口的路径 { int i=4;//初始点设定,注意i,j必须为偶数 int j=4; bool Left=false;//初始化四个方向,false代表可以朝这个方向搜索 bool Right=false; bool Up=false; bool Down=false; matrix[i][j].state=1;//设置初始点是空的,即不是墙 srand((int)time(0));//产生随机数种子,使得每次运行情况不同 Maze temp; temp.i=i; temp.j=j; temp.state=0; int count1=0; int num1=0; mazeStack->Push(temp);//将初始点进栈 while(1)//不断循环搜索可行方向,形成迷宫 { temp.i=i; temp.j=j; int randNum=0; randNum=rand()%4;//0,1,2,3 //我们假设迷宫矩阵的第一个元素(0,0)为入口,最后一个元素(M-1,N-2)为出口 if(temp.i==0&&temp.j==0) { EntryPath.clear(); while(mazeStack->isEmpty() == false) { EntryPath.push_back(mazeStack->GetTop());//获得从初始点到入口的路径 mazeStack->Pop(); } for(int ii=EntryPath.size()-1;ii>=0;ii--) { mazeStack->Push(EntryPath[ii]);//还原栈 } } if(temp.i==M-1&&temp.j==N-1) { ExitPath.clear(); while(mazeStack->isEmpty() == false) { ExitPath.push_back(mazeStack->GetTop());//获得从初始点到出口的路径 mazeStack->Pop(); } for(int i=ExitPath.size()-1;i>=0;i--) { mazeStack->Push(ExitPath[i]);//还原栈 } } switch(randNum) { case 0://向上搜索 if(Up==false&&i>1&&matrix[i-2][j].state!=1) { mazeStack->Push(temp); matrix[i-1][j].state=1; matrix[i-2][j].state=1; i=i-2; Left=false; Right=false; Up=false; Down=false; } else Up=true; break; case 1://向下搜索 if(Down==false&&i<M-2&&matrix[i+2][j].state!=1) { mazeStack->Push(temp); matrix[i+1][j].state=1; matrix[i+2][j].state=1; i=i+2; Left=false; Right=false; Up=false; Down=false; } else Down=true; break; case 2://向左搜索 if(Left==false&&j>1&&matrix[i][j-2].state!=1) { mazeStack->Push(temp); matrix[i][j-1].state=1; matrix[i][j-2].state=1; j=j-2; Left=false; Right=false; Up=false; Down=false; } else Left=true; break; case 3://向右搜索 if(Right==false&&j<N-2&&matrix[i][j+2].state!=1) { mazeStack->Push(temp); matrix[i][j+1].state=1; matrix[i][j+2].state=1; j=j+2; Left=false; Right=false; Up=false; Down=false; } else Right=true; break; }//end switch if(Left&&Right&&Up&&Down) //当上下左右都不可行时,进行回溯 { if(mazeStack->isEmpty()) //回溯完毕,生成迷宫 { return ; } else //进行出栈操作 { i = mazeStack->GetTop().i; j = mazeStack->GetTop().j; mazeStack->Pop(); Left=false; Right=false; Up=false; Down=false; } } }//end while } void MazeMat::displayMaze()//显示迷宫 { matrix[0][0].state = matrix[M-1][N-1].state = 2;//2表示入口和出口 for(int i=0;i<FinalPath.size();i++) { matrix[FinalPath.at(i).i][FinalPath.at(i).j].state=3;//3表示可达路径点 } cout<<"左上角为入口,右下角为出口,oo代表可达路径."<<endl; for(int k=0;k<N+2;k++)//在迷宫矩阵的外围墙 cout<<"■"; cout<<endl; for (int i = 0; i < M; i++) { cout<<"■"; for (int j = 0; j <N; j++) { switch ( matrix[i][j].state ) { case 0:cout<<"■";break;// 显示墙 case 1:cout<<" ";break;//显示空 case 2:cout<<"↘";break;//显示入口和出口 case 3:cout<<"oo";break;//显示可达路径 } } cout<<"■"; cout<<endl; } for(int k=0;k<N+2;k++) cout<<"■"; cout<<endl; } void MazeMat::FindWay()//寻找可达路径 { FinalPath.clear();//清零 int i=0,j=0; for(i=EntryPath.size()-1,j=ExitPath.size()-1;i>=0&&j>=0;i--,j--) { if(EntryPath.at(i).i!=ExitPath.at(j).i||EntryPath.at(i).j!=ExitPath.at(j).j) { break; } } if(i<0)//初始点到出口的路径中经过入口 { for(int k=ExitPath.size()-EntryPath.size()-1;k>=0;k--) { FinalPath.push_back(ExitPath.at(k)); } } else if(j<0)//初始点到入口的路径中经过出口 { for(int k=EntryPath.size()-ExitPath.size()-1;k>=0;k--) { FinalPath.push_back(EntryPath.at(k)); } } else//初始点到入口、出口的路径有部分重叠或则没有重叠 { for(int k=0;k<=i+1;k++) { FinalPath.push_back(EntryPath.at(k)); } for(int k=j;k>=0;k--) { FinalPath.push_back(ExitPath.at(k)); } } }3、MazeStack.h
#include"Maze.h" typedef Maze ElementType; //这里是栈的定义 typedef struct node { ElementType data; struct node *next; }Node; class MazeStack { public: MazeStack():bottom(NULL),top(NULL),Size(NULL){} ~MazeStack(){} bool isEmpty(); bool Push(ElementType e); ElementType GetTop(); ElementType Pop(); private: Node *bottom; Node *top; int Size; };
#include"MazeStack.h" bool MazeStack::isEmpty()//判断栈是否为空 { if(top==bottom) return true; return false; } bool MazeStack::Push(Maze m)//进栈 { Node *temp; temp=top; top=new Node(); if(!top) return false; top->data=m; top->next=temp; Size++; return true; } Maze MazeStack::Pop()//出栈 { Node temp; temp.data=top->data; temp.next=top->next; delete top; top=temp.next; Size--; return temp.data; } Maze MazeStack::GetTop()//取栈顶元素 { return top->data; }
#include"MazeStack.h" void main() { MazeMat matrix; matrix.initMaze(); matrix.createMaze(); matrix.FindWay(); matrix.displayMaze(); }
原文地址:http://blog.csdn.net/tengweitw/article/details/40213317