码迷,mamicode.com
首页 > 其他好文 > 详细

keras中的shape/input_shape

时间:2019-03-07 15:44:03      阅读:394      评论:0      收藏:0      [点我收藏+]

标签:lan   sdn   input   nbsp   就是   ref   降维   tar   形状   

在keras中,数据是以张量的形式表示的,张量的形状称之为shape,表示从最外层向量逐步到达最底层向量的降维解包过程。“维”的也叫“阶”,形状指的是维度数和每维的大小。比如,一个一阶的张量[1,2,3]的shape是(3,);

一个二阶的张量[[1,2,3],[4,5,6]]的shape是(2,3);一个三阶的张量[[[1],[2],[3]],[[4],[5],[6]]]的shape是(2,3,1)

 

input_shape就是指输入张量的shape。例如,input_dim=784,dim是指dimension(维度),说明输入是一个784维的向量,784维的向量怎么表示呢?[[...[1],[2],[3]]...],左边有784个左括号,这相当于一个一阶的张量,它的shape就是(784,)。因此,input_shape=(784,)。

 

参考链接:https://blog.csdn.net/x_ym/article/details/77728732

keras中的shape/input_shape

标签:lan   sdn   input   nbsp   就是   ref   降维   tar   形状   

原文地址:https://www.cnblogs.com/lfri/p/10489946.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!