标签:add bfs none min() bit 输入 for define empty
给定一棵无根树,边权都是1,请去掉一条边并加上一条新边,定义直径为最远的两个点的距离,请输出所有可能的新树的直径的最小值和最大值
第一行包含一个正整数n(3<=n<=500000),表示这棵树的点数。接下来n-1行,每行包含两个正整数u,v(1<=u,v<=n),表示u与v之间有一条边。
第一行输出五个正整数k,x1,y1,x2,y2,其中k表示新树直径的最小值,x1,y1表示这种情况下要去掉的边的两端点,x2,y2表示这种情况下要加上的边的两端点。第二行输出五个正整数k,x1,y1,x2,y2,其中k表示新树直径的最大值,x1,y1表示这种情况下要去掉的边的两端点,x2,y2表示这种情况下要加上的边的两端点。若有多组最优解,输出任意一组。
6
1 2
2 3
2 4
4 5
6 5
3 4 2 2 5
5 2 1 1 6
none
#include<bits/stdc++.h>
#define LL long long
LL in() {
char ch; LL x = 0, f = 1;
while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
return x * f;
}
const int inf = 0x7fffffff;
const int maxn = 1e6 + 10;
int f[maxn], g[maxn], up[maxn], dn[maxn][3], good[maxn][2], dep[maxn], F[maxn];
// 子树最长链,子树外最长链,以其为端点的最长链,次长链,次次长链(上下),子树f的最优,次优值,父亲
int n, minx, miny, maxx, maxy;
int min = inf, max;
struct node {
int to;
node *nxt;
node(int to = 0, node *nxt = NULL): to(to), nxt(nxt) {}
}*head[maxn];
std::queue<int> q;
bool vis[maxn];
void add(int from, int to) {
head[from] = new node(to, head[from]);
}
void dfs(int x, int fa) {
F[x] = fa;
dep[x] = dep[fa] + 1;
for(node *i = head[x]; i; i = i->nxt) {
if(i->to == fa) continue;
dfs(i->to, x);
f[x] = std::max(f[x], f[i->to]);
int now = dn[i->to][0] + 1;
if(now > dn[x][0]) { //向下的最长,次长,次次长链
dn[x][2] = dn[x][1];
dn[x][1] = dn[x][0];
dn[x][0] = now;
}
else if(now > dn[x][1]) {
dn[x][2] = dn[x][1];
dn[x][1] = now;
}
else if(now > dn[x][2]) dn[x][2] = now;
now = f[i->to];
if(now > good[x][0]) { //更新子树最优f
good[x][1] = good[x][0];
good[x][0] = now;
}
else if(now > good[x][1]) good[x][1] = now;
}
f[x] = std::max(f[x], dn[x][0] + dn[x][1]); //两条链更新f
}
void dfss(int x, int fa) {
if(x != 1) { //更新答案
if(max < f[x] + g[x] + 1) {
max = f[x] + g[x] + 1;
maxx = fa, maxy = x;
}
int upd = std::max(std::max(f[x], g[x]), ((f[x] + 1) >> 1) + ((g[x] + 1) >> 1) + 1);
if(min > upd) {
min = upd;
minx = fa, miny = x;
}
}
for(node *i = head[x]; i; i = i->nxt) {
if(i->to == fa) continue;
up[i->to] = std::max(up[i->to], up[x] + 1); //向上的最长链
g[i->to] = std::max(g[i->to], g[x]);
int now = dn[i->to][0] + 1;
if(now == dn[x][0]) { //讨论
g[i->to] = std::max(g[i->to], std::max(dn[x][1] + dn[x][2], up[x] + dn[x][1]));
up[i->to] = std::max(up[i->to], dn[x][1] + 1);
}
else if(now == dn[x][1]) {
g[i->to] = std::max(g[i->to], std::max(dn[x][0] + dn[x][2], up[x] + dn[x][0]));
up[i->to] = std::max(up[i->to], dn[x][0] + 1);
}
else {
g[i->to] = std::max(g[i->to], std::max(dn[x][0] + dn[x][1], up[x] + dn[x][0]));
up[i->to] = std::max(up[i->to], dn[x][0] + 1);
}
now = f[i->to];
if(now == good[x][0]) g[i->to] = std::max(g[i->to], good[x][1]);
else g[i->to] = std::max(g[i->to], good[x][0]);
dfss(i->to, x);
}
}
int getmid(int x, int y, int len) { //找中点
int now = len;
if(dep[x] < dep[y]) x ^= y ^= x ^= y;
while(now != (len + 1) >> 1) x = F[x], now--;
return x;
}
int bfsmin(int s) {
for(int i = 1; i <= n; i++) vis[i] = false;
vis[s] = true;
q.push(s);
while(!q.empty()) {
int tp = q.front(); q.pop();
s = tp;
for(node *i = head[tp]; i; i = i->nxt) {
if(vis[i->to]) continue;
if(tp == minx && i->to == miny) continue;
if(tp == miny && i->to == minx) continue;
q.push(i->to);
vis[i->to] = true;
}
}
return s;
}
int bfsmax(int s) {
for(int i = 1; i <= n; i++) vis[i] = false;
vis[s] = true;
q.push(s);
while(!q.empty()) {
int tp = q.front(); q.pop();
s = tp;
for(node *i = head[tp]; i; i = i->nxt) {
if(vis[i->to]) continue;
if(tp == maxx && i->to == maxy) continue;
if(tp == maxy && i->to == maxx) continue;
q.push(i->to);
vis[i->to] = true;
}
}
return s;
}
void predoit() {
dfs(1, 0), dfss(1, 0);
}
void getmin() {
printf("%d %d %d ", min, minx, miny);
int x = bfsmin(minx), y = bfsmin(x);
int s = bfsmin(miny), t = bfsmin(s);
printf("%d %d\n", getmid(x, y, g[miny]), getmid(s, t, f[miny])); //连中点
}
void getmax() {
printf("%d %d %d ", max, maxx, maxy);
printf("%d %d\n", bfsmax(maxx), bfsmax(maxy)); //连端点
}
int main() {
n = in();
int x, y;
for(int i = 1; i < n; i++) x = in(), y = in(), add(x, y), add(y, x);
predoit();
getmin();
getmax();
return 0;
}
标签:add bfs none min() bit 输入 for define empty
原文地址:https://www.cnblogs.com/olinr/p/10489757.html