码迷,mamicode.com
首页 > 其他好文 > 详细

TensorFlow --playground游乐场

时间:2019-03-11 13:36:00      阅读:390      评论:0      收藏:0      [点我收藏+]

标签:效果   机器学习   结果   info   节点   计算   --   游乐场   训练   

TensorFlow游乐场官网http://playground.tensorflow.org(国内需要梯子才能访问)

游乐场的神经网络结构有三层,第一层为输入层,输入的是特征向量(描述问题特征的向量,特征向量的提取对机器学习的效果十分重要),代表特征向量中每一个特征的取值。同一层的节点不会相连,而且每一层只和下一层链接(有的是跨层连接),直到最后一层作为输出层得到计算结果。在输入层与输出层之间是隐藏层,是神经网络的主体结构。

 

技术图片

 

通过游乐场可发现,使用神经网络解决分类问题主要有四个步骤:

  1. 提取问题中实体的特征向量作为神经网络的输入
  2. 定义神经网络的结构,并定义如何从神经网络的输入得到输出(隐藏层)
  3. 通过训练数据来调整神经网络中参数的取值(神经网络的训练过程)
  4. 使用训练好的神经网络来预测未知数据

 

TensorFlow --playground游乐场

标签:效果   机器学习   结果   info   节点   计算   --   游乐场   训练   

原文地址:https://www.cnblogs.com/lyh-vip/p/10509869.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!