码迷,mamicode.com
首页 > 其他好文 > 详细

项目实践中的机器学习

时间:2019-03-16 11:08:55      阅读:164      评论:0      收藏:0      [点我收藏+]

标签:重复数   数据   数据集   输入数据   进一步   学习   工程包   集合算法   增强   

这里介绍机器学习的六大步骤

一、定义问题

二、理解数据

三、数据准备

四、评估算法

五、优化模型

六、结果部署

(当然,这六个步骤并非机械的使用,有时候各个步骤还可能进一步细分,还有可能几个步骤合并成一个步骤。这里以常用的python模板为例)

 

详细说明

一、定义问题

需要导入常用的类库和数据集,包括导入python 的类库、类和方法,以及数据。可以将数据进行瘦身,快速进行可视化数据集建立。

二、理解数据

描述性统计来分析数据,可视化观察数据。***这一步需要花费时间多问几个问题,设定假设条件并调查分析一下,对模型的建立有很大的帮助。

三、数据准备

这一步主要是预处理数据:

通过删除重复数据、标记错误数值,甚至是标记错误的输入数据来清洗数据。

特征选择,包括移除多余的特征属性和增加新的特征属性。

数据转化,对数据尺度进行调整,或者调整数据的分布

不断重复以上步骤,直到找到足够准确的算法来生产模型。

~~~~~~~~~~~~~~~~~~~~起来活动一下~~~~~~~~~~~~~~~~~~~

******

数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。那特征工程本质是一项工程活动,目的是最大限度地从原始数据中提取特征以供算法和模型使用。通过总结和归纳,人们认为特征工程包括以下方面:

特征选择主要有两个目的:

减少特征数量、降维,使模型泛化能力更强,减少过拟合; 增强对特征和特征值之间的理解。

四、评估算法

分离出评估数据集

定义模型评估标准,用来评估算法模型

抽样审查线性算法和非线性算法

比较算法的准确度

五、优化模型

当得到一个准确度足够的算法列表后,要从中找出最合适的算法,通常可以用两种方法提高算法的准确度:

1.对每一种算法进行调参,得到最佳结果

2.使用集合算法来提高算法模型的准确度

六、结果部署

通过验证集来验证被优化过的模型

通过整个数据集来生产模型

将模型序列化,以便于预测新数据

项目实践中的机器学习

标签:重复数   数据   数据集   输入数据   进一步   学习   工程包   集合算法   增强   

原文地址:https://www.cnblogs.com/2019-02-11/p/10541109.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!