码迷,mamicode.com
首页 > 其他好文 > 详细

cluster by fast search and find of density peaks

时间:2014-10-19 11:25:21      阅读:172      评论:0      收藏:0      [点我收藏+]

标签:http   io   os   ar   for   sp   数据   on   amp   

This paper proposed a new cluster idea. The idea is that the cluster center is characterrized by a higher density than their neighbors and by a relatively large distance from points with highter density(1.一个类中的聚类中心的点的密度较高,2.不同聚类中心的距离较大).

Based on this assumption, for each data point bubuko.com,布布扣, we compute two quantities: Its local density bubuko.com,布布扣 and its distane bubuko.com,布布扣 from point with higher density. Both quantities are based on this distance bubuko.com,布布扣 .The local density bubuko.com,布布扣 is defined as 

bubuko.com,布布扣

where bubuko.com,布布扣 if bubuko.com,布布扣 <0 and bubuko.com,布布扣 otherwise, and bubuko.com,布布扣 is a cutshort distance.(影响变量有bubuko.com,布布扣 ).

bubuko.com,布布扣  is measured by computing the minimum distance between the point bubuko.com,布布扣and any other points with a higher density,(在密度比它大的数据点钟寻找距离最小的点).

在实际聚类中,首先画出一个叫做decision gragh 的东西,就是横坐标是 bubuko.com,布布扣 纵坐标是 bubuko.com,布布扣的图,寻找聚类中心时是这两个值都比较大的情况。然后,有一个类似依附原则,数据点A的类别被分配在距离A最近的而且密度大于A的那个点所在的类别(梯度)。

以上是模型,也可以有一个噪声模型:为每一个类规定一个边界,边界定义为距离本类中心最近并且距离其他类的中心小于bubuko.com,布布扣。这些被排除在外边的点称为Halo点。

以后的工作主要是实现这个算法,然后研究一下内部数学原理。

文章链接:

http://www.sciencemag.org/content/344/6191/1492.full

cluster by fast search and find of density peaks

标签:http   io   os   ar   for   sp   数据   on   amp   

原文地址:http://www.cnblogs.com/taokongcn/p/4034348.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!