标签:leetcode
毕业快一年了,算法相关的知识也快忘了差不多了。工作过程中,产品知识最重要,其次是代码的设计。算法的重要性几乎体现不出来。
最近忙里偷闲,在LeetCode OJ上闲逛, 打算把AC Rate >= 30%的题先A掉。
Unique Binary Search Trees 这道题AC非常高,题目是这样的,
Given n,
how many structurally unique BST‘s (binary
search trees) that store values 1...n?
直觉上应该用递归,或者是动态规划。
下面是思路:
设U(1, 2, ..., n)代表存储1...n的binary
search tree的数目。dp(i, n-1)代表以i为根,包含n-1个子结点的二叉树数目。
U(1, 2, ..., n) = dp(1, n-1) + dp(2, n-1) + ... dp(n, n-1).
Clearly, dp(i, n-1) = U(1, 2, ..., i-1) * U(i+1, i+2, ..., n),
and
U(i+1, i+2, ..., n) = U(1, 2, ..., n-i).
Thus, dp(i, n-1) = U(1, 2, ..., i-1) * U(1, 2, ..., n-i).
不妨简记U(n) = U(1, 2, ..., n), 那么
U(n) = U(0)*U(n-1) + U(1)*U(n-2) + ... + U(i-1)*U(n-i) + ... + U(n-1)*U(0), 1 <= i <=n.
Example.
U(0) = 1
U(1) = 1
U(2) = dp(1, 1)+dp(2, 1) = U(0)*U(1) + U(1)*U(0) = 2
U(3) = dp(1, 2)+dp(2, 2)+dp(3, 2) = U(0)*U(2) + U(1)*U(1) + U(2)*U(0) = 2 + 1 + 2 = 5
代码如下:
int rNumTrees(int n, int *U, int len) { if(U[n] != -1)return U[n]; U[n] = 0; for(int i = 1; i <= n; ++i) U[n] += rNumTrees(i-1, U, len) * rNumTrees(n-i, U, len); return U[n]; } int numTrees(int n) { if(n == 0 || n == 1)return 1; int *U = new int[n+1]; memset(U, -1, sizeof(int)*(n+1)); U[0] = U[1] = 1; int res = rNumTrees(n, U, n+1); delete []U; return res; }
LeetCode之Unique Binary Search Trees,布布扣,bubuko.com
LeetCode之Unique Binary Search Trees
标签:leetcode
原文地址:http://blog.csdn.net/dacxu/article/details/25814577