标签:func file pos rac 包含 ber starting with returns
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """解码CIFAR-10二进制文件""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from six.moves import xrange import tensorflow as tf # 处理图像为这个大小。注意这与原始的CIFAR图像大小32*32不同。 如果改变这个数字,那么整个模型结构会随之改变并需要重新训练。 IMAGE_SIZE = 24 # 描述CIFAR-10数据集的全局常量。 NUM_CLASSES = 10 NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = 50000 NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = 10000 def read_cifar10(filename_queue): """从CIFAR10数据文件中阅读并解析example。 推荐:如果你想要N路并行阅读,那么调用这个函数N次。这样会返回N个独立的Reader用来阅读那些文件里不同的文件和位置,这样会返回更好的混合example。 参数: filename_queue: 文件名字符串队列。 返回: 一个object代表一个example,包括以下内容: 高: result的行数(32) 宽: result的列数(32) 深: result的色彩通道数(3) key: 一个标量字符串描述这个example的文件名和record number。 标签: 一个带有标签(0..9)的int32 Tensor uint8image: 一个带有图像数据的[height, width, depth] uint8 Tensor """ class CIFAR10Record(object): pass result = CIFAR10Record() # CIFAR-10数据集中图像的维度。 label_bytes = 1 result.height = 32 result.width = 32 result.depth = 3 image_bytes = result.height * result.width * result.depth # 每一个record包含一个标签和一个固定长度的用来描述图像的bytes。 record_bytes = label_bytes + image_bytes # 阅读一个record,从filename_queue中获得filename。CIFAR-10格式没有header何footer,所以我们默认header——bytes和footer_bytes为0。 reader = tf.FixedLengthRecordReader(record_bytes=record_bytes) result.key, value = reader.read(filename_queue) # 将一个字符串转换成一个uint8向量 record_bytes = tf.decode_raw(value, tf.uint8) # 第一个bytes代表标签,我们将它转换成int32。 result.label = tf.cast( tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32) # 剩下的bytes代表图像,我们将它reshape成[depth, height, width]。 depth_major = tf.reshape( tf.strided_slice(record_bytes, [label_bytes], [label_bytes + image_bytes]), [result.depth, result.height, result.width]) # 转换成[height, width, depth] result.uint8image = tf.transpose(depth_major, [1, 2, 0]) return result def _generate_image_and_label_batch(image, label, min_queue_examples, batch_size, shuffle): """生成一个图像和标签batch队列。 Args: image: float32类型的[height, width, 3]Tensor label: int32类型的Tensor min_queue_examples: int32,保留在队列中的samples的最小数量,用来提供example batch。 batch_size: 每个batch的图像数量。 shuffle: boolean 表示是否打乱队列。 Returns: images: Images. [batch_size, height, width, 3] tensor labels: Labels. [batch_size] tensor """ # 创建一个队列来打乱example,然后阅读‘batch_size‘ images + labels num_preprocess_threads = 16 if shuffle: images, label_batch = tf.train.shuffle_batch( [image, label], batch_size=batch_size, num_threads=num_preprocess_threads, capacity=min_queue_examples + 3 * batch_size, min_after_dequeue=min_queue_examples) else: images, label_batch = tf.train.batch( [image, label], batch_size=batch_size, num_threads=num_preprocess_threads, capacity=min_queue_examples + 3 * batch_size) # 在visualizer中展示训练图像。 tf.summary.image(‘images‘, images) return images, tf.reshape(label_batch, [batch_size]) def distorted_inputs(data_dir, batch_size): """Construct distorted input for CIFAR training using the Reader ops. Args: data_dir: Path to the CIFAR-10 data directory. batch_size: Number of images per batch. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. """ filenames = [os.path.join(data_dir, ‘data_batch_%d.bin‘ % i) for i in xrange(1, 6)] for f in filenames: if not tf.gfile.Exists(f): raise ValueError(‘Failed to find file: ‘ + f) # Create a queue that produces the filenames to read. filename_queue = tf.train.string_input_producer(filenames) with tf.name_scope(‘data_augmentation‘): # Read examples from files in the filename queue. read_input = read_cifar10(filename_queue) reshaped_image = tf.cast(read_input.uint8image, tf.float32) height = IMAGE_SIZE width = IMAGE_SIZE # Image processing for training the network. Note the many random # distortions applied to the image. # Randomly crop a [height, width] section of the image. distorted_image = tf.random_crop(reshaped_image, [height, width, 3]) # Randomly flip the image horizontally. distorted_image = tf.image.random_flip_left_right(distorted_image) # Because these operations are not commutative, consider randomizing # the order their operation. # NOTE: since per_image_standardization zeros the mean and makes # the stddev unit, this likely has no effect see tensorflow#1458. distorted_image = tf.image.random_brightness(distorted_image, max_delta=63) distorted_image = tf.image.random_contrast(distorted_image, lower=0.2, upper=1.8) # Subtract off the mean and divide by the variance of the pixels. float_image = tf.image.per_image_standardization(distorted_image) # Set the shapes of tensors. float_image.set_shape([height, width, 3]) read_input.label.set_shape([1]) # Ensure that the random shuffling has good mixing properties. min_fraction_of_examples_in_queue = 0.4 min_queue_examples = int(NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN * min_fraction_of_examples_in_queue) print (‘Filling queue with %d CIFAR images before starting to train. ‘ ‘This will take a few minutes.‘ % min_queue_examples) # Generate a batch of images and labels by building up a queue of examples. return _generate_image_and_label_batch(float_image, read_input.label, min_queue_examples, batch_size, shuffle=True) def inputs(eval_data, data_dir, batch_size): """Construct input for CIFAR evaluation using the Reader ops. Args: eval_data: bool, indicating if one should use the train or eval data set. data_dir: Path to the CIFAR-10 data directory. batch_size: Number of images per batch. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. """ if not eval_data: filenames = [os.path.join(data_dir, ‘data_batch_%d.bin‘ % i) for i in xrange(1, 6)] num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN else: filenames = [os.path.join(data_dir, ‘test_batch.bin‘)] num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_EVAL for f in filenames: if not tf.gfile.Exists(f): raise ValueError(‘Failed to find file: ‘ + f) with tf.name_scope(‘input‘): # Create a queue that produces the filenames to read. filename_queue = tf.train.string_input_producer(filenames) # Read examples from files in the filename queue. read_input = read_cifar10(filename_queue) reshaped_image = tf.cast(read_input.uint8image, tf.float32) height = IMAGE_SIZE width = IMAGE_SIZE # Image processing for evaluation. # Crop the central [height, width] of the image. resized_image = tf.image.resize_image_with_crop_or_pad(reshaped_image, height, width) # Subtract off the mean and divide by the variance of the pixels. float_image = tf.image.per_image_standardization(resized_image) # Set the shapes of tensors. float_image.set_shape([height, width, 3]) read_input.label.set_shape([1]) # Ensure that the random shuffling has good mixing properties. min_fraction_of_examples_in_queue = 0.4 min_queue_examples = int(num_examples_per_epoch * min_fraction_of_examples_in_queue) # Generate a batch of images and labels by building up a queue of examples. return _generate_image_and_label_batch(float_image, read_input.label, min_queue_examples, batch_size, shuffle=False)
github/tensorflow/models/tutorials/image/cifar10/cifar10_input.py
标签:func file pos rac 包含 ber starting with returns
原文地址:https://www.cnblogs.com/estellellll/p/10551157.html