码迷,mamicode.com
首页 > 其他好文 > 详细

tf.reduce_mean

时间:2019-03-18 14:06:55      阅读:365      评论:0      收藏:0      [点我收藏+]

标签:int   strong   运算   降维   2.0   逻辑或   max   指定   最大   

tf.reduce_mean 函数用于计算张量tensor沿着指定的数轴(tensor的某一维度)上的的平均值,主要用作降维或者计算tensor的平均值。

reduce_mean(input_tensor,
                axis=None,
                keepdims=False,
                name=None,
                reduction_indices=None)

第一个参数input_tensor: 输入的待降维的tensor;
第二个参数axis: 指定的轴,如果不指定,则计算所有元素的均值;
第三个参数keepdims:是否降维度,设置为True,输出的结果保持输入tensor的形状,设置为False,输出结果会降低维度;
第四个参数name: 操作的名称;
第五个参数 reduction_indices:在以前版本中用来指定轴,已弃用;

示例1
keepdims=False 时:

import tensorflow as tf

x = [[1,2,3],
      [1,2,3]]

xx = tf.cast(x,tf.float32)

mean_all = tf.reduce_mean(xx, keepdims=False)
mean_0 = tf.reduce_mean(xx, axis=0, keepdims=False)
mean_1 = tf.reduce_mean(xx, axis=1, keepdims=False)


with tf.Session() as sess:
    print("mean_all:",sess.run(mean_all))
    print("mean_0:", sess.run(mean_0))
    print("mean_1:", sess.run(mean_1))

执行结果:

mean_all: 2.0
mean_0: [1. 2. 3.]
mean_1: [2. 2.]

示例2
keepdims=True时:

import tensorflow as tf

x = [[1,2,3],
      [1,2,3]]

xx = tf.cast(x,tf.float32)

mean_all = tf.reduce_mean(xx, keepdims=True)
mean_0 = tf.reduce_mean(xx, axis=0, keepdims=True)
mean_1 = tf.reduce_mean(xx, axis=1, keepdims=True)


with tf.Session() as sess:
    print("mean_all:",sess.run(mean_all))
    print("mean_0:", sess.run(mean_0))
    print("mean_1:", sess.run(mean_1))

执行结果:

mean_all: [[2.]]
mean_0: [[1. 2. 3.]]
mean_1: [[2.] [2.]]

类似函数还有:

  • tf.reduce_sum :计算tensor指定轴方向上的所有元素的累加和;
  • tf.reduce_max : 计算tensor指定轴方向上的各个元素的最大值;
  • tf.reduce_all : 计算tensor指定轴方向上的各个元素的逻辑和(and运算);
  • tf.reduce_any: 计算tensor指定轴方向上的各个元素的逻辑或(or运算);

tf.reduce_mean

标签:int   strong   运算   降维   2.0   逻辑或   max   指定   最大   

原文地址:https://www.cnblogs.com/chay/p/10551342.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!