码迷,mamicode.com
首页 > 其他好文 > 详细

test20190320 全连(fc)

时间:2019-03-20 18:54:15      阅读:129      评论:0      收藏:0      [点我收藏+]

标签:分治   mes   题意   sort   insert   The   过程   ini   open   

题意

全连(fc)

【题目背景】

还记得若干年前那段互相比较《克罗地亚狂想曲》的分数的日子吗?

【题目描述】

E.Space 喜欢打音游。
但是他技术不好,总是拿不到全连(Full Combo)。
现在他面前有一份乐谱,乐谱的其中一段有 n 个连续的单键音符。
相邻两个音符的到来时间均相等,我们可以认为第 i 个音符会在第 i 个时刻到来。
点击一个音符,E.Space 需要一段准备时间来进行移动手指之类的操作。由于音符的位置和周围情况不同,点击每个音符的准备时间也不同。
在一个音符的准备时间内,E.Space 没法做到去点击其它音符,但是不同音符的准备时间范围可以互相重叠。形式化地,令第 i 个音符的准备时间为 ti 个单位时间,那么如果 E.Space 选择去点击第 i 个音符,那么他就没法点击所有到来时刻在 (i ? ti, i + ti)中的音符。
为了获得更高的分数,E.Space 还计算了每个音符的性价比。一个音符的性价比等于点击这个音符得到的分数除以 E.Space 点击它所需要的准备时间。
E.Space 就不指望全连了,他只是想让你帮他计算一下他最多可以得到多少分数。

【输入格式】

从文件 fc.in 中读入数据。
第一行一个正整数 n 。
第二行 n 个正整数,第 i 个正整数表示 ti 。
第三行 n 个正整数,第 i 个正整数表示第 i 个音符的性价比 ai。

【输出格式】

输出到文件 fc.out 中。
一行一个正整数,表示 E.Space 可能达到的最高分数。

【样例 1 输入】

5
2 3 2 1 2
3 1 2 9 4

【样例 1 输出】

18

【样例 1 解释】

E.Space 可以选择点击第 1, 3, 5 个音符,分数为 2 × 3 + 2 × 2 + 2 × 4 = 18 。

【子任务】

保证 \(t_i ≤ n ,a_i ≤ 10^9\)

测试点编号 n ≤
1 5
2 10
3 15
4 20
5 1000
6 2000
7 5000
8 10000
9 30000
10 50000
11 100000
12 200000
13 500000
14 800000
15 1000000
16 1000000
17 100000
18 100000
19 1000000
20 1000000

对于最后 4 个测试点,保证对于任意的 i, j 有 \(t_i = t_j\)

分析

考场90分

看出来是偏序题,发现树套树会炸空间,于是去想cdq分治。

\(i-t_i\)小的应该先更新,于是初始化按\(i-t_i\)排序。然后考虑更新顺序,cdq分治应该使用中序遍历的方式。cdq过程中先做左半区间,把左半区间按照\(i\)排序,然后更新右半区间,最后做右半区间。

时间复杂度\(O(n \log^2 n)\)

#include<bits/stdc++.h>
#define rg register
#define il inline
#define co const
template<class T>il T read(){
    rg T data=0,w=1;rg char ch=getchar();
    while(!isdigit(ch)) {if(ch=='-') w=-1;ch=getchar();}
    while(isdigit(ch)) data=data*10+ch-'0',ch=getchar();
    return data*w;
}
template<class T>il T read(rg T&x) {return x=read<T>();}
typedef long long ll;
using namespace std;

co int N=1e6+1;
int n;
ll s[N];
#define lowbit(x) (x&-x)
il void init(int p){
    for(rg int i=p;i<=n;i+=lowbit(i)) s[i]=0;
}
il void insert(int p,ll v){
    for(rg int i=p;i<=n;i+=lowbit(i)) s[i]=max(s[i],v);
}
il ll query(int p){
    ll ans=0;
    for(rg int i=p;i;i-=lowbit(i)) ans=max(ans,s[i]);
    return ans;
}
struct node{
    int id,t;
    ll v,ans;
    il bool operator<(co node&b)co {return id-t<b.id-b.t;}
}a[N],b[N];
void solve(int l,int r){
    if(l==r) return void(a[l].ans=max(a[l].ans,a[l].v));
    int mid=l+r>>1;
    solve(l,mid);
    for(rg int i=l,j=mid+1,p=l;p<=r;++p){
        if(i>mid||j<=r&&a[i].id>a[j].id-a[j].t) a[j].ans=max(a[j].ans,query(a[j].id-1)+a[j].v),++j;
        else {if(a[i].id+a[i].t-1<=n) insert(a[i].id+a[i].t-1,a[i].ans); ++i;}
    }
    for(rg int i=l;i<=mid;++i) if(a[i].id+a[i].t-1<=n) init(a[i].id+a[i].t-1);
    solve(mid+1,r);
    for(rg int i=l,j=mid+1,p=l;p<=r;++p){
        if(i>mid||j<=r&&a[i].id>a[j].id) b[p]=a[j++];
        else b[p]=a[i++];
    }
    copy(b+l,b+r+1,a+l);
}
int main(){
    freopen("fc.in","r",stdin),freopen("fc.out","w",stdout);
    read(n);
    for(rg int i=1;i<=n;++i) a[i].id=i,read(a[i].t);
    for(rg int i=1;i<=n;++i) a[i].v=read<ll>()*a[i].t;
    sort(a+1,a+n+1),solve(1,n);
    ll ans=0;
    for(rg int i=1;i<=n;++i) ans=max(ans,a[i].ans);
    printf("%lld\n",ans);
    return 0;
}

标解

这是一道中规中矩的序列DP+1D1D的优化
没有多少思维难度
是一道开场就可以切掉的题

技术图片

没想到改变插入顺序……

#include<bits/stdc++.h>

using namespace std;

#define gc c=getchar()
#define r(x) read(x)
#define ll long long

template<typename T>
inline void read(T&x){
    x=0;T k=1;char gc;
    while(!isdigit(c)){if(c=='-')k=-1;gc;}
    while(isdigit(c)){x=x*10+c-'0';gc;}x*=k;
}

const int N=1e7+5;

int n;
ll c[N];

inline void insert(int x,ll v){
    for(int i=x;i<=n;i+=(i&-i)){
        c[i]=max(c[i],v);
    }
}

inline ll query(int x){
    if(x<=0)return 0;
    ll ret=0;
    for(int i=x;i;i^=(i&-i)){
        ret=max(c[i],ret);
    }
    return ret;
}

ll f[N];
int t[N];
int a[N];

vector<int>G[N];

int main(){
    freopen("fc.in","r",stdin);
    freopen("fc.out","w",stdout);
    r(n);
    for(int i=1;i<=n;++i){
        r(t[i]);
        if(i+t[i]<=n)G[i+t[i]].push_back(i);
    }
    for(int i=1;i<=n;++i){
        r(a[i]);
        for(int j=0;j<G[i].size();++j){
            insert(G[i][j],f[G[i][j]]);
        }
        f[i]=query(i-t[i])+(ll)a[i]*t[i];
    }
    ll ans=0;
    for(int i=1;i<=n;++i){
        ans=max(ans,f[i]);
    }
    printf("%lld\n",ans);
    return 0;
}

test20190320 全连(fc)

标签:分治   mes   题意   sort   insert   The   过程   ini   open   

原文地址:https://www.cnblogs.com/autoint/p/10566732.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!