码迷,mamicode.com
首页 > 其他好文 > 详细

Numpy 系列(七)- 常用函数

时间:2019-03-20 20:33:59      阅读:755      评论:0      收藏:0      [点我收藏+]

标签:了解   span   and   table   sum   基本   数组   1.3   log   

在了解了 Numpy 的基本运算操作,下面来看下 Numpy常用的函数。

    数学运算函数

add(x1,x2 [,out]) 按元素添加参数,等效于 x1 + x2
subtract(x1,x2 [,out]) 按元素方式减去参数,等效于x1 - x2
multiply(x1,x2 [,out]) 逐元素乘法参数,等效于x1 * x2
divide(x1,x2 [,out]) 逐元素除以参数,等效于x1 / x2
exp(x [,out]) 计算输入数组中所有元素的指数。
exp2(x [,out]) 对于输入数组中的所有p,计算2 ** p
log(x [,out]) 自然对数,逐元素。
log2(x [,out]) x的基础2对数。
log10(x [,out]) 以元素为单位返回输入数组的基数10的对数。
expm1(x [,out]) 对数组中的所有元素计算exp(x) - 1
log1p(x [,out]) 返回一个加自然对数的输入数组,元素。
sqrt(x [,out]) 按元素方式返回数组的正平方根。
square(x [,out]) 返回输入的元素平方。
sin(x [,out]) 三角正弦。
cos(x [,out]) 元素余弦。
tan(x [,out])  逐元素计算切线。
x = np.random.randint(4, size=6).reshape(2,3)
x
Out[203]: 
array([[0, 2, 3],
       [3, 1, 0]])
y = np.random.randint(4, size=6).reshape(2,3)
y
Out[204]: 
array([[0, 3, 3],
       [3, 1, 1]])
x + y
Out[205]: 
array([[0, 5, 6],
       [6, 2, 1]])
np.add(x, y)
Out[206]: 
array([[0, 5, 6],
       [6, 2, 1]])
np.square(x)
Out[207]: 
array([[0, 4, 9],
       [9, 1, 0]], dtype=int32)
np.log1p(2)
Out[209]: 1.0986122886681098
np.log1p(1.8)
Out[210]: 1.0296194171811581
np.log1p(x)
Out[212]: 
array([[0.        , 1.09861229, 1.38629436],
       [1.38629436, 0.69314718, 0.        ]])
np.log(np.e)
Out[213]: 1.0
np.log2(2)
Out[214]: 1.0
np.log10(10)
Out[215]: 1.0

 规约函数

下面所有的函数都支持axis来指定不同的轴,用法都是类似的。

 

ndarray.sum([axis,dtype,out,keepdims]) 返回给定轴上的数组元素的总和。
ndarray.cumsum([axis,dtype,out]) 返回沿给定轴的元素的累积和。
ndarray.mean([axis,dtype,out,keepdims]) 返回沿给定轴的数组元素的平均值。
ndarray.var([axis,dtype,out,ddof,keepdims]) 沿给定轴返回数组元素的方差。
ndarray.std([axis,dtype,out,ddof,keepdims]) 返回给定轴上的数组元素的标准偏差。
ndarray.argmax([axis,out]) 沿着给定轴的最大值的返回索引。
ndarray.min([axis,out,keepdims]) 沿给定轴返回最小值。
ndarray.argmin([axis,out]) 沿着给定轴的最小值的返回索引。

 

x = np.random.randint(10, size=6).reshape(2,3)
x
Out[217]: 
array([[3, 9, 4],
       [2, 2, 1]])
np.sum(x)
Out[218]: 21
np.sum(x, axis=0)
Out[219]: array([ 5, 11,  5])
np.sum(x, axis=1)
Out[220]: array([16,  5])
np.argmax(x)
Out[221]: 1
np.argmax(x, axis=0)
Out[222]: array([0, 0, 0], dtype=int64)
np.argmax(x, axis=1)
Out[223]: array([1, 0], dtype=int64)

  

 

Numpy 系列(七)- 常用函数

标签:了解   span   and   table   sum   基本   数组   1.3   log   

原文地址:https://www.cnblogs.com/zhangyafei/p/10567392.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!