码迷,mamicode.com
首页 > 其他好文 > 详细

Xgboost调参总结

时间:2019-03-25 19:15:46      阅读:256      评论:0      收藏:0      [点我收藏+]

标签:highlight   regress   grid   print   inf   sklearn   selection   png   core   

1. 回归

from xgboost.sklearn import XGBRegressor
from sklearn.model_selection import ShuffleSplit
import xgboost as xgb

xgb_model_ = XGBRegressor(n_thread=8)
cv_split = ShuffleSplit(n_splits = 6,train_size=0.7,test_size=0.2)
xgb_params={‘max_depth‘:[4,5,6,7],
           ‘learning_rate‘:np.linspace(0.03,0.3,10),
           ‘n_estimators‘:[100,200]}

xgb_search = GridSearchCV(xgb_model_,
                          param_grid=xgb_params,
                          scoring=‘r2‘,
                          iid=False,
                          cv=5)
xgb_search.fit(gbdt_train_data,gbdt_train_label)

print(xgb_search.grid_scores_)
print(xgb_search.best_params_)
print(xgb_search.best_score_)

技术图片

 

2. 分类

Xgboost调参总结

标签:highlight   regress   grid   print   inf   sklearn   selection   png   core   

原文地址:https://www.cnblogs.com/nxf-rabbit75/p/10595551.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!