码迷,mamicode.com
首页 > 其他好文 > 详细

MapReduce编程模型

时间:2019-04-02 11:03:58      阅读:177      评论:0      收藏:0      [点我收藏+]

标签:alt   tostring   smo   dex   exce   pre   png   单词   src   

技术图片
# 文本前期处理
strl_ist = str.replace(\n, ‘‘).lower().split( )
count_dict = {}
# 如果字典里有该单词则加 1,否则添加入字典
for str in strl_ist:
if str in count_dict.keys():
    count_dict[str] = count_dict[str] + 1
    else:
        count_dict[str] = 1

建一个hash表,将文本中的每个词都放在这个hash表里面,如果这个词第一次放入,就新建一个kry,Value对,key是这个词,Value是1;如果已经有这个词,那么给Value+1。

# Mapeduce 计算框架会将这些<word,1>收集起来,将相同的word放在一起,形成<word,<1,1,1,1,1,1…>>这样的<key,value集合>数据,然后将其输入给reduce函数
public class WordCount {

  public static class TokenizerMapper
       extends Mapper<Object, Text, Text, IntWritable>{

    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();

    public void map(Object key, Text value, Context context
                    ) throws IOException, InterruptedException {
      StringTokenizer itr = new StringTokenizer(value.toString());
      while (itr.hasMoreTokens()) {
        word.set(itr.nextToken());
        context.write(word, one);
      }
    }
  }

  public static class IntSumReducer
       extends Reducer<Text,IntWritable,Text,IntWritable> {
    private IntWritable result = new IntWritable();

    public void reduce(Text key, Iterable<IntWritable> values,
                       Context context
                       ) throws IOException, InterruptedException {
      int sum = 0;
      for (IntWritable val : values) {
        sum += val.get();
      }
      result.set(sum);
      context.write(key, result);
    }
  }
}

reduce函数的计算过程:将这个集合中的1求和,再将单词(word)和这个和(sum)组成一个<key,Value>,也就是<word,sum>输出。

MapReduce编程模型

标签:alt   tostring   smo   dex   exce   pre   png   单词   src   

原文地址:https://www.cnblogs.com/pipiyan/p/10640980.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!