题目大意:多边形求内核模板题
思路:半平面交,我用的是O(nlogn)的半平面交,但是有一个问题,就是当多边形内核是一个点的时候,半平面交所得到的答案是空集合,但是输出应该是yes,实在没有什么好的解决方法,最后只能把所有直线向右移动,然后在求内核。但是这样做eps的不同取值有的时候能A有的时候不能A。有没有什么好的解决方法啊!!!求解答啊!!!
CODE:
#include <cmath> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define MAX 110 #define EPS 1e-12 #define DCMP(a) (fabs(a) < EPS ? true:false) using namespace std; struct Point{ double x,y; Point(double _ = 0.0,double __ = 0.0):x(_),y(__) {} Point operator -(const Point &a)const { return Point(x - a.x,y - a.y); } Point operator +(const Point &a)const { return Point(x + a.x,y + a.y); } Point operator *(double a)const { return Point(x * a,y * a); } void operator += (const Point &a) { x += a.x, y += a.y; } void Read() { scanf("%lf%lf",&x,&y); } }point[MAX],p[MAX],polygon[MAX]; struct Line{ Point p,v; double alpha; bool operator <(const Line &a)const { return alpha < a.alpha; } Line(Point _,Point __):p(_),v(__) { alpha = atan2(v.y,v.x); } Line() {} }line[MAX],q[MAX]; int cases; int points,lines; inline void Initialize(); inline void MakeLine(const Point &a,const Point &b); inline double Cross(const Point &a,const Point &b); inline bool OnLeft(const Line &l,const Point &p); inline bool HalfPlaneIntersection(); inline Point GetIntersection(const Line &a,const Line &b); int main() { for(cin >> cases;cases; --cases) { scanf("%d",&points); Initialize(); for(int i = 1;i <= points; ++i) point[i].Read(); for(int i = points;i > 1; --i) MakeLine(point[i],point[i - 1]); MakeLine(point[1],point[points]); sort(line + 1,line + lines + 1); bool ans = HalfPlaneIntersection(); if(ans) puts("YES"); else puts("NO"); } return 0; } inline void Initialize() { lines = 0; } inline void MakeLine(const Point &a,const Point &b) { Point p = a; Point v = b - a; p += Point(v.y, -v.x) * (EPS * 0.5); line[++lines] = Line(p, v); } inline double Cross(const Point &a,const Point &b) { return a.x * b.y - a.y * b.x; } inline bool OnLeft(const Line &l,const Point &p) { return Cross(l.v,p - l.p) > 0; } inline Point GetIntersection(const Line &a,const Line &b) { Point u = a.p - b.p; double temp = Cross(b.v,u) / Cross(a.v,b.v); return a.p + a.v * temp; } inline bool HalfPlaneIntersection() { int front = 1,tail = 1; q[1] = line[1]; for(int i = 2;i <= lines; ++i) { while(front < tail && !OnLeft(line[i],p[tail - 1])) --tail; while(front < tail && !OnLeft(line[i],p[front])) ++front; if(DCMP(Cross(line[i].v,q[tail].v))) q[tail] = OnLeft(q[tail],line[i].p) ? line[i]:q[tail]; else q[++tail] = line[i]; if(front < tail) p[tail - 1] = GetIntersection(q[tail],q[tail - 1]); } while(front < tail && !OnLeft(q[front],p[tail - 1])) --tail; return front < tail; }
POJ 3335 Rotating Scoreboard 半平面交求多边形内核
原文地址:http://blog.csdn.net/jiangyuze831/article/details/40297771