标签:结果 sys text class odi quit size 相关信息 命令
# coding: utf-8 import sys import os import dlib import glob import cv2 import tkinter # root = tkinter.Tk() # root.minsize(400, 400) # menubar = tkinter.Menu(root) # filemenu = tkinter.Menu(menubar, tearoff=0) # menubar.add_cascade(label=‘命令‘, menu=filemenu) # menubar.add_cascade(label=‘工具‘) # menubar.add_cascade(label=‘收藏夹‘) # menubar.add_cascade(label=‘选项‘) # menubar.add_cascade(label=‘帮助‘) # root.config(menu=menubar) def index(): # 指定路径 current_path = os.getcwd() model_path = current_path + ‘\\model\\‘ shape_predictor_model = model_path + ‘shape_predictor_5_face_landmarks.dat‘ face_rec_model = model_path + ‘dlib_face_recognition_resnet_model_v1.dat‘ face_folder = current_path + ‘\\faces\\‘ output_folder = current_path + ‘\\output\\‘ # 导入模型 detector = dlib.get_frontal_face_detector() shape_detector = dlib.shape_predictor(shape_predictor_model) face_recognizer = dlib.face_recognition_model_v1(face_rec_model) # 为后面操作方便,建了几个列表 descriptors = [] images = [] # 遍历faces文件夹中所有的图片 for f in glob.glob(os.path.join(face_folder, "*.jpg")): print(‘处理文件:{}‘.format(f)) # 读取图片 img = cv2.imread(f) # 转换到rgb颜色空间 img2 = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # 检测人脸 dets = detector(img2, 1) print("检测到的人脸数: {}".format(len(dets))) # 遍历所有的人脸 for index, face in enumerate(dets): # 检测人脸特征点 shape = shape_detector(img2, face) # 投影到128D face_descriptor = face_recognizer.compute_face_descriptor(img2, shape) # 保存相关信息 descriptors.append(face_descriptor) images.append((img2, shape)) # 聚类 labels = dlib.chinese_whispers_clustering(descriptors, 0.5) #labels print("标签: {}".format(labels)) num_classes = len(set(labels)) #Number of clusters print("分类数: {}".format(num_classes)) # 为了方便操作,用字典类型保存 face_dict = {} for i in range(num_classes): face_dict[i] = [] #print (face_dict) for i in range(len(labels)): face_dict[labels[i]].append(images[i]) #print (face_dict.keys()) # 遍历字典,保存结果 for key in face_dict.keys(): file_dir = os.path.join(output_folder, str(key)) if not os.path.isdir(file_dir): os.makedirs(file_dir) for index, (image, shape) in enumerate(face_dict[key]): file_path = os.path.join(file_dir, ‘face_‘ + str(index)) print("图片位置:",file_path) dlib.save_face_chip(image, shape, file_path) # button1 =tkinter.Button(text="图片分类",command=index) # button1.place(x=250,y=150,relheight=0.1) # label1 =tkinter.Label() # label1.place() # # root.mainloop() if __name__ == ‘__main__‘: #def main(): while True: print("") print("="*40) print("1.faces文件夹是存放分类图片的位置") print("2.output文件夹是整理后存放图片的位置") print("3.退出请输入:quit") print("="*40) print("") print("是否进行分类?") a = input("请输入Y进行确认: ") if a == "Y" or a == "y": index() elif a =="quit": break else: print("请重新输入")
标签:结果 sys text class odi quit size 相关信息 命令
原文地址:https://www.cnblogs.com/ssxblog/p/10674212.html