题目大意:按顺序给出一个多边形的顶点,求这个多边形内核的面积。答案保留两位输出。
思路:半平面交。加边的时候要讨论一下第一个点和最后一个点,否则会wa的很惨。
CODE:
#include <cmath> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define MAX 1510 #define EPS 1e-8 #define DCMP(a) (fabs(a) < EPS) using namespace std; struct Point{ double x,y; Point(double _ = .0,double __ = .0):x(_),y(__) {} Point operator +(const Point &a)const { return Point(x + a.x,y + a.y); } Point operator -(const Point &a)const { return Point(x - a.x,y - a.y); } Point operator *(double a)const { return Point(x * a,y * a); } void Read() { scanf("%lf%lf",&x,&y); } }point[MAX],p[MAX],ploygen[MAX]; struct Line{ Point p,v; double alpha; Line(Point _,Point __):p(_),v(__) { alpha = atan2(v.y,v.x); } Line() {} bool operator <(const Line &a)const { return alpha < a.alpha; } }line[MAX],q[MAX]; int cases; int points,lines; inline void Initialize(); inline void MakeLine(const Point &a,const Point &b); inline double Cross(const Point &a,const Point &b); inline bool OnLeft(const Line &l,const Point &p); inline Point GetIntersection(const Line &a,const Line &b); inline double HalfPlaneIntersection(); inline double GetArea(int cnt); int main() { for(cin >> cases;cases; --cases) { scanf("%d",&points); Initialize(); for(int i = 1;i <= points; ++i) point[i].Read(); for(int i = points;i > 1; --i) MakeLine(point[i],point[i - 1]); MakeLine(point[1],point[points]); sort(line + 1,line + lines + 1); printf("%.2lf\n",HalfPlaneIntersection()); } return 0; } inline void Initialize() { lines = 0; } inline void MakeLine(const Point &a,const Point &b) { line[++lines] = Line(a,b - a); } inline double Cross(const Point &a,const Point &b) { return a.x * b.y - a.y * b.x; } inline Point GetIntersection(const Line &a,const Line &b) { Point u = a.p - b.p; double temp = Cross(b.v,u) / Cross(a.v,b.v); return a.p + a.v * temp; } inline bool OnLeft(const Line &l,const Point &p) { return Cross(l.v,p - l.p) > 0; } inline double HalfPlaneIntersection() { int front = 1,tail = 1; q[tail] = line[1]; for(int i = 2;i <= lines; ++i) { while(front < tail && !OnLeft(line[i],p[tail - 1])) --tail; while(front < tail && !OnLeft(line[i],p[front])) ++front; if(DCMP(Cross(line[i].v,q[tail].v))) q[tail] = OnLeft(q[tail],line[i].p) ? line[i]:q[tail]; else q[++tail] = line[i]; if(front < tail) p[tail - 1] = GetIntersection(q[tail],q[tail - 1]); } while(front < tail && !OnLeft(q[front],p[tail - 1])) --tail; if(front == tail) return .0; p[tail] = GetIntersection(q[front],q[tail]); int cnt = 0; for(int i = front;i <= tail; ++i) ploygen[++cnt] = p[i]; return GetArea(cnt); } inline double GetArea(int cnt) { double re = Cross(ploygen[cnt],ploygen[1]); for(int i = 1;i < cnt; ++i) re += Cross(ploygen[i],ploygen[i + 1]); return fabs(re / 2); }
原文地址:http://blog.csdn.net/jiangyuze831/article/details/40299747