码迷,mamicode.com
首页 > 其他好文 > 详细

LCIS-最长公共上升子序列

时间:2019-04-18 12:08:38      阅读:121      评论:0      收藏:0      [点我收藏+]

标签:例题   class   max   font   集合   最大   for   进入   lcis   

 

 

LCS最长公共子序列
for(int i=1; i<=n; i++)
    for(int j=1; j<=m; j++)
    {
        if(a[i]==b[j])
            f[i][j]=f[i-1][j-1]+1;
        else
            f[i][j]=max(f[i-1][j],f[i][j-1]);
    }

LIS最长上升子序列
for(int i=2; i<=n; i++)
    for(int j=1; j<i; j++)
    {
        if(a[i]>a[j])
            f[i]=max(f[i],f[j]+1);
        ans=max(ans,f[i]);
    }


// 例题:LCIS,O(N^3)
for (int i = 1; i <= n; i++)
    for (int j = 1; j <= m; j++)
        if (a[i] == b[j])
        {
            for (int k = 0; k < j; k++)
                if (b[k] < a[i])
                    f[i][j] = max(f[i][j], f[i - 1][k] + 1);
        }
        else f[i][j] = f[i - 1][j];


// 例题:LCIS,O(N^2)
for (int i = 1; i <= n; i++)
{
    // val是决策集合S(i,j)中f[i-1][k]的最大值
    int val = 0;
    // j=1时,0可以作为k的取值
    if (b[0] < a[i]) val = f[i - 1][0];
    for (int j = 1; j <= m; j++)
    {
        if (a[i] == b[j]) f[i][j] = val + 1;
        else f[i][j] = f[i - 1][j];
        // j即将增大为j+1,检查j能否进入新的决策集合
        if (b[j] < a[i]) val = max(val, f[i - 1][j]);
    }
}

 

LCIS-最长公共上升子序列

标签:例题   class   max   font   集合   最大   for   进入   lcis   

原文地址:https://www.cnblogs.com/dongdong25800/p/10728734.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!