标签:max clu while void nec ace 2.0 reverse names
#include<bits/stdc++.h> using namespace std; #define maxn 510 const double eps=1E-8; int sig(double d){ return(d>eps)-(d<-eps); } struct Point{ double x,y; Point(){} Point(double x,double y):x(x),y(y){} bool operator==(const Point&p)const{ return sig(x-p.x)==0&&sig(y-p.y)==0; } }; double cross(Point o,Point a,Point b){ return(a.x-o.x)*(b.y-o.y)-(b.x-o.x)*(a.y-o.y); } double area(Point* ps,int n){ ps[n]=ps[0]; double res=0; for(int i=0;i<n;i++){ res+=ps[i].x*ps[i+1].y-ps[i].y*ps[i+1].x; } return res/2.0; } int lineCross(Point a,Point b,Point c,Point d,Point&p){ double s1,s2; s1=cross(a,b,c); s2=cross(a,b,d); if(sig(s1)==0&&sig(s2)==0) return 2; if(sig(s2-s1)==0) return 0; p.x=(c.x*s2-d.x*s1)/(s2-s1); p.y=(c.y*s2-d.y*s1)/(s2-s1); return 1; } //多边形切割 //用直线ab切割多边形p,切割后的在向量(a,b)的左侧,并原地保存切割结果 //如果退化为一个点,也会返回去,此时n为1 void polygon_cut(Point*p,int&n,Point a,Point b){ static Point pp[maxn]; int m=0;p[n]=p[0]; for(int i=0;i<n;i++){ if(sig(cross(a,b,p[i]))>0) pp[m++]=p[i]; if(sig(cross(a,b,p[i]))!=sig(cross(a,b,p[i+1]))) lineCross(a,b,p[i],p[i+1],pp[m++]); } n=0; for(int i=0;i<m;i++) if(!i||!(pp[i]==pp[i-1])) p[n++]=pp[i]; while(n>1&&p[n-1]==p[0])n--; } //返回三角形oab和三角形ocd的有向交面积,o是原点// double intersectArea(Point a,Point b,Point c,Point d){ Point o(0,0); int s1=sig(cross(o,a,b)); int s2=sig(cross(o,c,d)); if(s1==0||s2==0)return 0.0;//退化,面积为0 if(s1==-1) swap(a,b); if(s2==-1) swap(c,d); Point p[10]={o,a,b}; int n=3; polygon_cut(p,n,o,c); polygon_cut(p,n,c,d); polygon_cut(p,n,d,o); double res=fabs(area(p,n)); if(s1*s2==-1) res=-res;return res; } //求两多边形的交面积 double intersectArea(Point*ps1,int n1,Point*ps2,int n2){ if(area(ps1,n1)<0) reverse(ps1,ps1+n1); if(area(ps2,n2)<0) reverse(ps2,ps2+n2); ps1[n1]=ps1[0]; ps2[n2]=ps2[0]; double res=0; for(int i=0;i<n1;i++){ for(int j=0;j<n2;j++){ res+=intersectArea(ps1[i],ps1[i+1],ps2[j],ps2[j+1]); } } return res; }
//求两个任意简单多边形的并面积 Point ps1[maxn],ps2[maxn]; int n1,n2; int main()
{ while(scanf("%d%d",&n1,&n2)!=EOF){ for(int i=0;i<n1;i++) scanf("%lf%lf",&ps1[i].x,&ps1[i].y); for(int i=0;i<n2;i++) scanf("%lf%lf",&ps2[i].x,&ps2[i].y); double ans=intersectArea(ps1,n1,ps2,n2); ans=fabs(area(ps1,n1))+fabs(area(ps2,n2))-ans;//容斥 printf("%.2f\n",ans); } return 0; }
标签:max clu while void nec ace 2.0 reverse names
原文地址:https://www.cnblogs.com/kannyi/p/10734255.html