标签:工程师 ken http 包括 文件的 分析 pyplot 通用 才智
今天的主题是有关科学计算和可视化的,其中将会包括有python的第三方库numpy以及matplotlib的学习总结及应用!
有所涉猎的同学一定对这两个库并不陌生!它们分别是对数组的处理和数据处理的图表制作工具,在数据处理方面它们都有不俗的表现!
接下来先让我简单介绍一下这两个库~(安装过程就不详述啦~pip install +库就能随心安装,或者你也可以选择直接安装Anaconda 强大的库函数多到你用不完,里面自然有今天所要展开了解的两个库啦~)
numpy:
概述:numpy(Numerical Python)提供了python对多维数组对象的支持:ndarray,具有矢量运算能力,快速、节省空间。numpy支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库,它在数据处理方面有它不俗的表现力。
创建ndarray数组:ndarray:N维数组对象(矩阵),所有元素必须是相同类型。
ndarray属性:ndim属性,表示维度个数;shape属性,表示各维度大小;dtype属性,表示数据类型。
一些函数汇总:
函数 | 说明 |
array | 将输入数据(列表、元组、数组或其他序列类型)转换为ndarray、要么推断出dtype,要么显示指定dtpye。默认直接复制输入数据 |
asarray | 将输入转换为ndarray,如果输入本身就是一个ndarray将不进行复制 |
arange | 类似于内置的range,但返回的是一个ndarray而不是列表 |
ones、ones_like | 根据指定的形状和dtpye创建一个全1的数组。ones_like以另一个数组为参数,并根据其形状和dtype创建一个全1的数组 |
zeros、zeros_like | 类似上一项,创建全为0的数组 |
empty、empty_like | 创建新数组,只分配内存空间但不填充任何值 |
eye、identity | 创建一个正方的N*N单位矩阵(对角线为1,其余为0) |
当然还有一些通用函数,比如说我们的math库中的一些计算函数fabs,abs,sqrt,sin,cos等等,这些同样适合于ndarray,这里就不一一列举了。
现在来看看我们的实例应用吧~
实验一:
import numpy print (‘使用列表生成一维数组‘) data = [1,2,3,4,5] x = numpy.array(data) print (x) print (x.dtype) print (x.ndim) print (x.shape) print (‘使用列表生成二维数组‘) data = [[1,0],[2,0],[3,0]] x = numpy.array(data) print (x) print (x.ndim) print (x.shape) print (‘使用zero/ones/empty创建数组:根据shape来创建‘) x = numpy.zeros(5) print (x) x = numpy.zeros((3,3)) print (x) x = numpy.ones((2,3)) print (x) x = numpy.empty((3,2)) print (x) print (‘使用arrange生成连续元素‘) print (numpy.arange(5)) print (numpy.arange(0,5,2))
效果:
我们看到这个试验中我们新建了一些特殊数组(单位数组即全1数组,全0数组,以及一、二维数组,当然还有其中各元素的type(类型)的讨论)
我们还可以学习到numpy中的ndarray的数据类型,有大致下面几种:
类型 | 类型代码 | 说明 |
int8、uint8 | i1、u1 | 有符号或无符号的8位(1个字节)整型 |
int16、uint16 | i2、u2 | 有符号或无符号的16位(2个字节)整型 |
int32、uint32 | i4、u4 | 有符号或无符号的32位(4个字节)整型 |
int64、uint64 | i8、u8 | 有符号或无符号的64位(8个字节)整型 |
float16 | f2 | 半精度浮点数 |
float32 | f4/f | 标准的单精度浮点数。与C的float兼容 |
float64 | f8/d | 标准的双精度浮点数。与C的double和python的float对象兼容 |
float128 | f16/g | 扩展精度浮点数 |
complex64、complex128 | c8/c16 | 分别用两个32位、64位或128位的浮点数表示复数 |
complex256 | c32 | 复数 |
bool | ? | 储存True和False值的布尔类型 |
object | O | python对象类型 |
string_ | S | 固定长度的字符串类型(每个字符1个字符)S10即为创建长度为10的字符串 |
unicode_ | U | 固定长度的unicode类型(字节数由平台决定)U10即为创建长度为10的unicode |
实验二:
import numpy print (‘生成指定元素类型的数组:设置dtype属性‘) x = numpy.array([1,2.6,3],dtype = numpy.int64) print (x) print (x.dtype) print (x.ndim) print (x.shape) x = numpy.array([1,2,3],dtype = numpy.float64) print (x) print (x.dtype) print (x.ndim) print (x.shape) x = numpy.array([-1,-2,-3,-4],dtype = numpy.uint16) print (x) print (x.dtype) print (x.ndim) print (x.shape) print (‘使用astype复制数组,并转换类型‘) x = numpy.array([1,2.6,3],dtype = numpy.float64) y = x.astype(numpy.int32) print (y) print (x) print (x.ndim) print (x.shape) z = y.astype(numpy.float64) print (z) print (x.ndim) print (x.shape) print (‘将字符串元素转换为数值元素‘) x = numpy.array([‘1‘,‘2‘,‘3‘],dtype = numpy.string_) y = x.astype(numpy.int32) print (x) print (x.ndim) print (x.shape) print (y) print (‘使用其他数组的数据类型作为参数‘) x = numpy.array([ 1., 2.6,3. ],dtype = numpy.float32) y = numpy.arange(3,dtype=numpy.int32) print (y) print (y.astype(x.dtype))
效果:
在这个实验中,我们具体讨论了数组的不同数据类型的情况下生成数据的例子,我们尝试了int,float,和uint三种形式,得到了想要的结果(其中我们知道uint是无符号整型,它在计算机内存中一其相对应正数的补码形式存在,故会出现上述情况,-1的补码是1111 1111,值为10进制数为65535)我们还对dtype属性进行讨论,尝试了复制其属性的功能……
实验三:
import numpy print (‘ndarray数组与标量/数组的运算‘) x = numpy.array([1,2,3]) print (x*2) print (x**2) print (x>2) y = numpy.array([3,4,5]) print (x+y) print (x^y) print (x>y) print (‘ndarray的花式索引:使用整型数组作为索引‘) x = numpy.array([1,2,3,4,5,6]) print (x[[0,1,2]]) print (x[[-1,-2,-3]]) x = numpy.array([[1,2],[3,4],[5,6]]) print (x[[0,1]]) print (x[[0,1],[0,1]]) # [1,4] 打印x[0][0]和x[1][1] print (x[[0,1]][:,[0,1]]) # 打印01行的01列 [[1,2],[3,4]] # 使用numpy.ix_()函数增强可读性 print (x[numpy.ix_([0,1],[0,1])]) x[[0,1],[0,1]] = [0,0] print (x)# [[0,2],[3,0],[5,6]]
效果:
该例有数组之间的简单的数乘运算以及bool运算和花式索引的实现~
实验四:
import numpy print (‘ndarray数组的转置和轴对换‘) k = numpy.arange(9) m = k.reshape((3,3)) # 改变数组的shape复制生成2维的,每个维度长度为3的数组 print (k) print (m) # 转置(矩阵)数组:T属性 : mT[x][y] = m[y][x] print (m.T) # 计算矩阵的内积 xTx print (numpy.dot(m,m.T)) # numpy.dot点乘 # 高维数组的轴对象 k = numpy.arange(8).reshape(2,2,2) print (k) print (k[1][0][0]) # 轴变换 transpose 参数:由轴编号组成的元组 m = k.transpose((1,0,2)) print (m) print (m[0][1][0]) # 轴交换 swapaxes (axes:轴),参数:一对轴编号 m = k.swapaxes(0,1) print (m) print (m[0][1][0]) # 使用轴交换进行数组矩阵转置 m = numpy.arange(9).reshape((3,3)) print (m) print (m.swapaxes(1,0))
效果:
该例,就是有关数列或说矩阵的基本运算(数乘运算,转置,点乘等)……
学习了这些numpy库已经在日常中基本够用,当然它还有很多值得探讨深挖的部分,上述只是冰山一角哦~当然不要忘了多加练习!!
matplotlib:
概述:matplotlib是基于numpy的一套Python工具包。这个包提供了丰富的数据绘图工具,主要用于绘制一些统计图形。
在这个强大的库的学习过程中,我得到了一个非常有用的消息:IPython的使用,特别在matplotlib的运用中,这个环境下的表现出乎意料的好!不禁感叹聪明的计算机工程师大触们的才智之高!
那么如何使用IPython库呢?
一样用cmd命令行,利用指令"ipython --pylab"就可以调用出IPython环境:
然后输入代码(从网上copy并稍作修改):
效果:
非常nice的效果,直观又美观!matplotlib实在是作图做表神器!
matplotlib参数设置:
在代码执行过程中,有两种方式更改参数:
axex: 设置坐标轴边界和表面的颜色、坐标刻度值大小和网格的显示
backend: 设置目标暑促TkAgg和GTKAgg
figure: 控制dpi、边界颜色、图形大小、和子区( subplot)设置
font: 字体集(font family)、字体大小和样式设置
grid: 设置网格颜色和线性
legend: 设置图例和其中的文本的显示
line: 设置线条(颜色、线型、宽度等)和标记
patch: 是填充2D空间的图形对象,如多边形和圆。控制线宽、颜色和抗锯齿设置等。
savefig: 可以对保存的图形进行单独设置。例如,设置渲染的文件的背景为白色。
verbose: 设置matplotlib在执行期间信息输出,如silent、helpful、debug和debug-annoying。
xticks和yticks: 为x,y轴的主刻度和次刻度设置颜色、大小、方向,以及标签大小。
作为中国程序员,在面向中国人群体时,我们在制作图表的过程中免不了会使用中文标注,分析等,那要怎么加中文字呢?
我们会使用:
import matplotlib.pyplot as plt plt.rcParams[‘font.family‘]=[‘SimHei‘] #用来正常显示中文标签 plt.rcParams[‘axes.unicode_minus‘]=False #用来正常显示负号
还是刚刚的代码,加了中文的“SimHei”(黑体)显示,可以有下面的表现形式:
import matplotlib.pyplot as plt plt.rcParams[‘font.family‘]=[‘SimHei‘] plt.rcParams[‘axes.unicode_minus‘]=False labels=‘青蛙‘,‘猪‘,‘狗子‘,‘原木‘ sizes=25,20,45,60 colors=‘yellowgreen‘,‘gold‘,‘lightskyblue‘,‘lightcoral‘ explode=0,0.2,0,0 plt.pie(sizes,explode=explode,labels=labels,colors=colors,autopct=‘%1.2f%%‘,shadow=True,startangle=50) plt.axis(‘equal‘) plt.show()
ok~
当制作折线图的时候,我们还会运用其他一些功能:
线条标记及相关属性:
线条风格linestyle或ls | 描述 |
‘-‘ | 实线 |
‘—‘ | 破折线 |
‘-.‘ | 点划线 |
‘:‘ | 虚线 |
‘None‘,‘‘,‘‘ | 什么都不画 |
标记masker | 描述 | 标记 | 描述 |
‘o‘ | 圆圈 | ‘.’ | 点 |
‘D‘ | 菱形 | ‘s‘ | 正方形 |
‘h‘ | 六边形1 | ‘*‘ | 星号 |
‘H‘ | 六边形2 | ‘d‘ | 小菱形 |
‘_‘ | 水平线 | ‘v‘ | 一角朝下的三角形 |
‘8‘ | 八边形 | ‘<‘ | 一角朝左的三角形 |
‘p‘ | 五边形 | ‘>‘ | 一角朝右的三角形 |
‘,‘ | 像素 | ‘^‘ | 一角朝上的三角形 |
‘+‘ | 加号 | ‘\ | ‘ |
‘None‘,‘‘,‘‘ | 无 | ‘x‘ | X |
当然还有颜色,背景颜色等参数的设置,具体跟其他常规库别无二致。
例如:
通过向如matplotlib.pyplot.axes()
或者matplotlib.pyplot.subplot()
这样的方法提供一个axisbg
参数,可以指定坐标这的背景色。
subplot(111,axisbg=(0.1843,0.3098,0.3098)
通过更深入的学习,折线图,条形图,饼图,流程图,梯形图等等你都能制作,结合numpy的数据分析,你能够运用强大的计算分析众多数据,让你更直观地认识,理解眼前的世界!
(形式丰富的分析图形表格)
下面是我的实例!!
成绩雷达图:
import matplotlib.pyplot as plt import numpy as np import matplotlib plt.rcParams[‘font.family‘]=‘SimHei‘ labels=np.array([‘总成绩‘,‘单选‘,‘程序题‘,‘剩余用时‘,‘复写率‘]) nAttr=5 data=np.array([7.4,8,6.8,2,9]) angles=np.linspace(0,2*np.pi,nAttr,endpoint=False) data=np.concatenate((data,[data[0]])) angles=np.concatenate((angles,[angles[0]])) fig=plt.figure(facecolor=‘white‘) plt.subplot(111,polar=True) plt.plot(angles,data,‘b*-‘,color=‘y‘,linewidth=3) plt.fill(angles,data,facecolor=‘g‘,alpha=0.25) plt.thetagrids(angles*180/np.pi,labels) plt.figtext(0.52,0.95,‘iconangle的成绩表‘,ha=‘center‘) plt.grid(True) plt.savefig(‘scorce_radar.JPG‘) plt.show()
效果:
看上去我的单选似乎更强一点(耸肩)
进阶地,研究一个物理规律:我选择研究单摆
伽利略曾对单摆的运动产生浓厚的兴趣,我通过查找单摆的运动公式,得到一个这样的单摆周期计算公式:
T=2π√(L/g)
那么利用numpy以及matplotlib可以绘制出这个规律的模型:
代码如下:
import matplotlib.pyplot as plt import numpy as np plt.rcParams[‘font.family‘]=‘SimHei‘ plt.title("在重力加速度为9.8m/s的时候单摆的周期(T)与摆长(L)关系") plt.xlabel(‘摆长(L)‘) plt.ylabel(‘周期(T)‘) x=np.linspace(0.0,40.0,1000) y=2*np.pi*np.sqrt(x/9.8) plt.plot(x,y,‘k‘,color=‘g‘,linewidth=3,linestyle=‘-‘) plt.show()
效果:
直观又美观!相当棒!
那么今天的学习分享就先到这里啦~谢谢关注!!
标签:工程师 ken http 包括 文件的 分析 pyplot 通用 才智
原文地址:https://www.cnblogs.com/iconangle/p/10741465.html