标签:i++ sha 复杂度 ble query 长度 div 建表 turn
RMQ复杂度:建表$O\left ( nlgn \right ) $,查询$O\left ( 1 \right )$
ll F_Min[maxn][20],F_Max[maxn][20]; void Init() { for(int i = 1; i <= n; i++) { F_Min[i][0] = F_Max[i][0] = num[i]; } for(int i = 1; (1<<i) <= n; i++) //按区间长度递增顺序递推 { for(int j = 1; j+(1<<i)-1 <= n; j++) //区间起点 { F_Max[j][i] = max(F_Max[j][i-1],F_Max[j+(1<<(i-1))][i-1]); F_Min[j][i] = min(F_Min[j][i-1],F_Min[j+(1<<(i-1))][i-1]); } } } ll Query_max(int l,int r)//l到r,num数组的最大值 { int k = (int)(log(double(r-l+1))/log((double)2)); return max(F_Max[l][k], F_Max[r-(1<<k)+1][k]); } ll Query_min(int l,int r)//l到r,num数组的最小值 { int k = (int)(log(double(r-l+1))/log((double)2)); return min(F_Min[l][k], F_Min[r-(1<<k)+1][k]); }
标签:i++ sha 复杂度 ble query 长度 div 建表 turn
原文地址:https://www.cnblogs.com/carcar/p/10742630.html