码迷,mamicode.com
首页 > 其他好文 > 详细

P2053 [SCOI2007]修车

时间:2019-04-24 12:07:19      阅读:149      评论:0      收藏:0      [点我收藏+]

标签:一个   答案   个人   bfs   title   type   printf   tchar   tps   

传送门

求最小平均等待时间就相当于求最小总等待时间

考虑对于一个技术人员的修车顺序,$k_1,k_2,k_3,...,k_p$

这 $p$ 辆车的车主的总等待时间为 $t_{k_1},t_{k_1}+t_{k_2},t_{k_1}+t_{k_2}+t_{k_3},...,t_{k_1}+t_{k_2}+t_{k_3}+...+t_{k_p}$

把同种的 $t$ 放在一起,考虑每种 $t$ 的贡献:$t_{k_1}*p,t_{k_2}*(p-1),t_{k_3}*(p-2),...,t_{k_p}*1$

可以发现,如果车 $x$ 在修车顺序中为 $y$,总修车数为 $p$,那么 $x$ 的贡献就是 $t_x*(p-y+1)$

倒过来,如果 $x$ 在倒过来的修车顺序中为 $y$,总修车数为 $p$,那么 $x$ 的贡献就是 $t_x*y$

考虑构建这样一个费用流模型, $m$ 个技术人员拆成 $n$ 个点,每辆车往所有这些点连边,

车 $x$ 连向第 $i$ 个技术人员的第 $j$ 个点的边表示,车 $x$ 可以选择让第 $i$ 个人倒数第 $j$ 个修

那么对于每辆车 $x$ , $S$ 向 $x$ 连一条流量为 $1$,费用为 $0$ 的边,表示这种车只有一辆

每辆车 $x$ 向所有技术人员的 $m*n$ 个点 $y$(设此点表示第 $i$ 个人倒数第 $j$ 个修 )连边,流量为 $1$,费用为 $cst[i][x]*j$($cst[i][x]$ 表示第 $i$ 个人修第 $x$ 辆车需要的时间)

对于所有技术人员的 $m*n$ 个点,向 $T$ 一条流量为 $1$,费用 $0$ 的边

然后最小费用最大流就是答案了

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<queue>
using namespace std;
typedef long long ll;
inline int read()
{
    int x=0,f=1; char ch=getchar();
    while(ch<0||ch>9) { if(ch==-) f=-1; ch=getchar(); }
    while(ch>=0&&ch<=9) { x=(x<<1)+(x<<3)+(ch^48); ch=getchar(); }
    return x*f;
}
const int N=2e5+7,INF=1e9+7;
int fir[N],from[N<<1],to[N<<1],val[N<<1],cst[N<<1],cntt=1;
inline void add(int a,int b,int c,int d)
{
    from[++cntt]=fir[a]; fir[a]=cntt;
    to[cntt]=b; val[cntt]=c; cst[cntt]=d;
    from[++cntt]=fir[b]; fir[b]=cntt;
    to[cntt]=a; val[cntt]=0; cst[cntt]=-d;
}
int mif[N],pre[N],dis[N],S,T;
bool inq[N];
queue <int> q;
bool BFS()
{
    for(int i=S;i<=T;i++) dis[i]=INF;
    q.push(S); dis[S]=0; inq[S]=1; mif[S]=INF;
    while(!q.empty())
    {
        int x=q.front(); q.pop(); inq[x]=0;
        for(int i=fir[x];i;i=from[i])
        {
            int &v=to[i]; if( !val[i] || dis[v]<=dis[x]+cst[i] ) continue;
            dis[v]=dis[x]+cst[i]; pre[v]=i;
            mif[v]=min(mif[x],val[i]);
            if(!inq[v]) q.push(v),inq[v]=1;
        }
    }
    return dis[T]<INF;
}
int ans;
void upd()
{
    for(int now=T,i=pre[T]; now!=S; now=to[i^1],i=pre[now])
        val[i]-=mif[T],val[i^1]+=mif[T];
    ans+=mif[T]*dis[T];
}

int m,n,nm;
int main()
{
    m=read(),n=read(); int t;
    nm=n*m; S=0,T=nm+n+1;
    for(int i=1;i<=n;i++) add(S,nm+i,1,0);
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
        {
            t=read();
            for(int k=1;k<=n;k++)
                add(nm+i,(j-1)*n+k,1,t*k);
        }
    for(int i=1;i<=m;i++)
        for(int j=1;j<=n;j++) add((i-1)*n+j,T,1,0);
    while(BFS()) upd();
    printf("%.2lf",1.0*ans/n);
    return 0;
}

 

P2053 [SCOI2007]修车

标签:一个   答案   个人   bfs   title   type   printf   tchar   tps   

原文地址:https://www.cnblogs.com/LLTYYC/p/10761486.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!