标签:sync utc printf rank math.h cond std span get
大意: 将所有长度为2*n的合法括号序列建成一颗trie树, 求trie树上选出一个最大不相交的边集, 输出边集大小.
最大边集数一定不超过奇数层结点数. 这个上界可以通过从底层贪心达到, 所以就转化为求奇数层结点数.
然后就dp求出前$i$为‘(‘比‘)‘多j个的方案数, 奇数层且合法的时候统计一下贡献即可.
#include <iostream> #include <iostream> #include <algorithm> #include <cstdio> #include <math.h> #include <set> #include <map> #include <queue> #include <string> #include <string.h> #include <bitset> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr putchar(10) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl ‘\n‘ #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<‘ ‘;hr;}) using namespace std; typedef long long ll; typedef pair<int,int> pii; const int P = 1e9+7, INF = 0x3f3f3f3f; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;} inline int rd() {int x=0;char p=getchar();while(p<‘0‘||p>‘9‘)p=getchar();while(p>=‘0‘&&p<=‘9‘)x=x*10+p-‘0‘,p=getchar();return x;} //head const int N = 4e3+10; int n, dp[N][N]; int main() { scanf("%d", &n); dp[0][0] = 1; int ans = 0; REP(i,0,2*n) { REP(j,0,i) { (dp[i+1][j+1] += dp[i][j]) %= P; if (j) (dp[i+1][j-1] += dp[i][j]) %= P; if (2*n-i>=j&&i%2==1) (ans += dp[i][j]) %= P; } } printf("%d\n", ans); }
Neko and Aki's Prank CodeForces - 1152D (括号序列,dp)
标签:sync utc printf rank math.h cond std span get
原文地址:https://www.cnblogs.com/uid001/p/10794440.html