码迷,mamicode.com
首页 > 其他好文 > 详细

[ZJOI2012]小蓝的好友

时间:2019-04-30 21:45:57      阅读:136      评论:0      收藏:0      [点我收藏+]

标签:its   位置   旋转   题解   type   pac   操作   display   节点   

https://www.luogu.org/problemnew/show/P2611

题解

\(n\times m\)肯定过不去。。

我们把给定的点看做障碍点,考虑先补集转化为求全空矩阵。

然后我们枚举每一行,令这一行每个点的权值为从这点向上的极大不包含障碍点的连续段。

然后对这个序列建立笛卡尔树,那么答案为:
\[ f[x]=(h[x]-h[fa[x]])*\frac{szie[x]*(size[x]+1)}{2} \]
我们的笛卡尔树上的的每个节点都要维护一个这样的信息。

现在我们还需要扫描每一行,动态维护这颗笛卡尔树。

如果这行没有障碍点,我们整体加个1就好了,这个可以直接打标记。

对于障碍点,相当于这个位置的值变成了0,那么我们把这个点旋转上来就好了,通过手玩我们可以发现\(rotate\)操作不会破坏除了这个点以外的其他点的笛卡尔树结构,于是我们可以一直\(rotate\)把这个点转上去,顺便更新一下答案就好了,因为是随机的数据,所以每次期望操作次数是\(log\)的。

注意如果按照上面的\(\Delta h\)那样算贡献的话如果一个点的父亲改变了的话这个点需要重新\(pushup\)一次。

代码

#include<bits/stdc++.h>
#define N 100009
#define ls tr[x][0]
#define rs tr[x][1]
using namespace std;
typedef long long ll;
vector<int>vec[N];
vector<int>::iterator it;
int tr[N][2],fa[N],size[N],h[N],la[N],n,m,num,rot;
ll dp[N],ans;
inline ll rd(){
    ll x=0;char c=getchar();bool f=0;
    while(!isdigit(c)){if(c=='-')f=1;c=getchar();}
    while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
    return f?-x:x;
}
inline ll calc(ll x){return x*(x+1)/2;}
inline bool ge(int x){return tr[fa[x]][1]==x;}
inline void pushup(int x){
    size[x]=size[ls]+size[rs]+1;
    dp[x]=dp[ls]+dp[rs]+1ll*(h[x]-h[fa[x]])*calc(size[x]);
}
inline void rotate(int x){
    int y=fa[x],o=ge(x);
    tr[y][o]=tr[x][o^1];fa[tr[y][o]]=y;
    if(fa[y])tr[fa[y]][ge(y)]=x;fa[x]=fa[y];
    fa[y]=x;tr[x][o^1]=y;
    if(tr[y][o])pushup(tr[y][o]);pushup(y);pushup(x); 
}
inline void add(int x,int y){
    h[x]+=y;la[x]+=y;
    pushup(x);
}
inline void pushdown(int x){
    if(la[x]){
        if(ls)add(ls,la[x]);
        if(rs)add(rs,la[x]);
        la[x]=0;
    }
}
void _pushdown(int x){
    if(fa[x])_pushdown(fa[x]);
    pushdown(x);
} 
int build(int l,int r){
    if(l>r)return 0;
    int x=(l+r)>>1;
    ls=build(l,x-1);rs=build(x+1,r);
    if(ls)fa[ls]=x;if(rs)fa[rs]=x;
    size[x]=size[ls]+size[rs]+1;
    return x;
}
void dfs(int x){
    pushdown(x);
    if(ls)dfs(ls);
    cout<<x<<" "<<ls<<" "<<rs<<" "<<h[ls]<<" "<<h[rs]<<" "<<h[x]<<" "<<dp[x]<<endl;
    if(rs)dfs(rs); 
}
int main(){
    n=rd();m=rd();num=rd();
    rot=build(1,m);
    for(int i=1;i<=num;++i){
        int x,y;
        x=rd(),y=rd();
        vec[x].push_back(y); 
    }
    for(int i=1;i<=n;++i){
        add(rot,1);
        for(it=vec[i].begin();it!=vec[i].end();++it){
            int x=*it;
            _pushdown(x);
            while(fa[x])rotate(x);
            h[x]=0;
            if(ls)pushup(ls);if(rs)pushup(rs);
            pushup(x);
            rot=x;
        }
        ans+=dp[rot];
    }
    printf("%lld",calc(n)*calc(m)-ans);
    return 0;
}

[ZJOI2012]小蓝的好友

标签:its   位置   旋转   题解   type   pac   操作   display   节点   

原文地址:https://www.cnblogs.com/ZH-comld/p/10798060.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!