码迷,mamicode.com
首页 > 其他好文 > 详细

动态规划基础-----01背包(总结)

时间:2019-04-30 23:53:58      阅读:234      评论:0      收藏:0      [点我收藏+]

标签:col   动态规划   style   备忘   min   记录   结构   code   mic   

1、动态规划(DP)

  动态规划(Dynamic Programming,DP)与分治区别在于划分的子问题是有重叠的,解过程中对于重叠的部分只要求解一次,记录下结果,其他子问题直接使用即可,减少了重复计算过程。 
  另外,DP在求解一个问题最优解的时候,不是固定的计算合并某些子问题的解,而是根据各子问题的解的情况选择其中最优的。 
  动态规划求解具有以下的性质: 
  最优子结构性质、子问题重叠性质   
  最优子结构性质:最优解包含了其子问题的最优解,不是合并所有子问题的解,而是找最优的一条解线路,选择部分子最优解来达到最终的最优解。 
  子问题重叠性质:先计算子问题的解,再由子问题的解去构造问题的解(由于子问题存在重叠,把子问题解记录下来为下一步使用,这样就直接可以从备忘录中读取)。其中备忘录中先记录初始状态。

2、求解思路

  ①、将原问题分解为子问题(子问题和原问题形式相同,且子问题解求出就会被保存); 
  ②、确定状态:01背包中一个状态就是个物体中第个是否放入体积为背包中; 
  ③、确定一些初始状态(边界状态)的值; 
  ④、确定状态转移方程,如何从一个或多个已知状态求出另一个未知状态的值。(递推型)

3、01背包问题求解思路

  ①、确认子问题和状态 
  01背包问题需要求解的就是,为了体积V的背包中物体总价值最大化,件物品中第件应该放入背包中吗?(其中每个物品最多只能放一件) 
  为此,我们定义一个二维数组,其中每个元素代表一个状态,即前个物体中若干个放入体积为背包中最大价值。数组为:,其中表示前件中若干个物品放入体积为的背包中的最大价值。 
  ②、初始状态 
  初始状态为和都为0,前者表示前0个物品(也就是空物品)无论装入多大的包中总价值都为0,后者表示体积为0的背包啥价值的物品都装不进去。 

我自己写的的没保存,只能把这个整来凑数了

伪代码

for(int t=1;t<=n;t++)
{
   for(int j=V;j>=v[t];j--)
   {
        dp[j]=max(dp[j],dp[j-v[t]]+w[t]);
    }
}

 

动态规划基础-----01背包(总结)

标签:col   动态规划   style   备忘   min   记录   结构   code   mic   

原文地址:https://www.cnblogs.com/Staceyacm/p/10798502.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!