码迷,mamicode.com
首页 > 其他好文 > 详细

codeforces 786B Legacy

时间:2019-05-02 09:37:06      阅读:126      评论:0      收藏:0      [点我收藏+]

标签:math   queue   line   技术   lin   ret   info   include   注意   

题目链接:codeforces 786B

线段树优化建边的模板题

注意到暴力建边是\(O(qlen)\),显然会超时

这种区间的问题一般把它放到线段树上有奇效,那我们就放到线段树上,线段树上的一个节点表示它所代表区间的连边情况

发现放在一棵线段树上效果好像也不明显,那就放在两棵线段树上

我们用一棵线段树来起到进入某个点的作用,另一棵起到走出某个点的作用

初始化时,第一棵线段树的父亲节点向儿子节点连边权为\(0\)的边,叶子结点向其代表的图上节点连边

具体的,对于一个节点\([l,r]\),将其连向\([l,mid]\)\([mid+1,r]\)。特别的,当\(l=r\)时,线段树上的该点连向图上编号为\(l\)的点

另一棵线段树的操作类似,但是一条边的两端正好相反

大概就是这样的一个东西

技术图片

接下来考虑询问

\(op=1\),则直接连边

\(op=2\),对于区间\([l,r]\)将其放到第一棵线段树上,首先这个区间会被拆成\(log\)段,我们将\(u\)连向这些区间,权值为给定的\(w\),根据线段树上的子孙关系,这个操作等价于连向了\([l,r]\)中的所有点(经过若干条权值为\(0\))的边

\(op=3\),我们将这个区间放到第二颗线段树上,它也会被拆成\(log\)段,让这些区间连向\(u\),权值为\(w\),则对于任意在\([l,r]\)区间的点\(v\),它首先可以走到第二棵线段树的对应叶子结点上,之后一直向上走一定能走到\([l,r]\)拆出来的区间之一

于是我们的点数索然变成了\(O(5n)\),但是边数减少到了\(O(qlogn+4n)\),可以直接跑\(dijkstra\)求解最短路

#include<iostream>
#include<string.h>
#include<string>
#include<stdio.h>
#include<algorithm>
#include<math.h>
#include<vector>
#include<queue>
#include<map>
#include<set>
using namespace std;
#define lowbit(x) (x)&(-x)
#define fir first
#define sec second
#define rep(i,a,b) for (register int i=a;i<=b;i++)
#define per(i,a,b) for (register int i=a;i>=b;i--)
#define maxd (ll)1e18+7
typedef long long ll;
const int N=1000000;
const double pi=acos(-1.0);
struct edgenode{
    int to,nxt,cost;
}sq[8002000];
int all=0,head[4001000];

struct hnode{
    int u;ll dis;
};
bool operator<(const hnode &p,const hnode &q)
{
    return p.dis>q.dis;
}
priority_queue<hnode> q;

int n,m,s,tot=0;
ll dis[4001000];
bool vis[4001000];

int read()
{
    int x=0,f=1;char ch=getchar();
    while ((ch<'0') || (ch>'9')) {if (ch=='-') f=-1;ch=getchar();}
    while ((ch>='0') && (ch<='9')) {x=x*10+(ch-'0');ch=getchar();}
    return x*f;
}

void add(int u,int v,int w)
{
    all++;sq[all].to=v;sq[all].nxt=head[u];sq[all].cost=w;head[u]=all;
}

void build1(int id,int l,int r)
{
    tot=max(id,tot);
    if (l==r)
    {
        add(id+n,l,0);
        return;
    }
    int mid=(l+r)>>1;
    build1(id<<1,l,mid);
    build1(id<<1|1,mid+1,r);
    add(id+n,(id<<1)+n,0);
    add(id+n,(id<<1|1)+n,0);
}

void build2(int id,int l,int r)
{
    if (l==r)
    {
        add(l,id+tot+n,0);
        return;
    }
    int mid=(l+r)>>1;
    build2(id<<1,l,mid);
    build2(id<<1|1,mid+1,r);
    add((id<<1|1)+n+tot,id+n+tot,0);
    add((id<<1)+n+tot,id+n+tot,0);
}

void modify1(int id,int l,int r,int u,int ql,int qr,int w)
{
    if ((l>=ql) && (r<=qr))
    {
        add(u,id+n,w);
        return;
    }
    int mid=(l+r)>>1;
    if (ql<=mid) modify1(id<<1,l,mid,u,ql,qr,w);
    if (qr>=mid+1) modify1(id<<1|1,mid+1,r,u,ql,qr,w);
}

void modify2(int id,int l,int r,int u,int ql,int qr,int w)
{
    if ((l>=ql) && (r<=qr))
    {
        add(id+n+tot,u,w);
        return;
    }
    int mid=(l+r)>>1;
    if (ql<=mid) modify2(id<<1,l,mid,u,ql,qr,w);
    if (qr>=mid+1) modify2(id<<1|1,mid+1,r,u,ql,qr,w);
}

void dij(int s)
{
    rep(i,1,N) dis[i]=maxd;
    dis[s]=0;q.push((hnode){s,0});
    while (!q.empty())
    {
        int u=q.top().u;q.pop();
        if (vis[u]) continue;vis[u]=1;
        int i;
        for (i=head[u];i;i=sq[i].nxt)
        {
            int v=sq[i].to;
            if (dis[v]>dis[u]+sq[i].cost)
            {
                dis[v]=dis[u]+sq[i].cost;
                if (!vis[v]) q.push((hnode){v,dis[v]});
            }
        }
    }
}

int main()
{
    n=read();m=read();s=read();
    build1(1,1,n);
    build2(1,1,n);
    while (m--)
    {
        int op=read();
        if (op==1)
        {
            int u=read(),v=read(),w=read();
            add(u,v,w);
        }
        else if (op==2)
        {
            int u=read(),l=read(),r=read(),w=read();
            modify1(1,1,n,u,l,r,w);
        }
        else if (op==3)
        {
            int u=read(),l=read(),r=read(),w=read();
            modify2(1,1,n,u,l,r,w);
        }
    }
    dij(s);
    rep(i,1,n) if (dis[i]!=maxd) printf("%lld ",dis[i]);
    else printf("-1 ");
    return 0;
}

codeforces 786B Legacy

标签:math   queue   line   技术   lin   ret   info   include   注意   

原文地址:https://www.cnblogs.com/encodetalker/p/10801407.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!