码迷,mamicode.com
首页 > 其他好文 > 详细

无多普勒频移的海底混响单元散射模型卷积法

时间:2019-05-02 15:42:52      阅读:183      评论:0      收藏:0      [点我收藏+]

标签:模型   nbsp   增加   figure   单元   卷积   for   com   abs   

%对混响的理解有帮助

%无多普勒频移的海底混响单元散射模型卷积法
clc;clear all;close all;
%参数设置============================================================
fs=200000;      %采样频率
f0=30000;       %中心频率
%k=1250000;      %k =B/t =5kHz/4ms
B=5000;
c=1500;         %声速
h=50;           %距海底距离
u=-27;
rou=1;             %密度
v=20;
azm=pi/6;          %声纳水平方位角
startt=0.08;        %混响起始时间
endt=0.3;          %混响终止时间
T=0.005;%脉冲宽度
ts=0:1/fs:T-1/fs;%脉冲时间序列
s1=exp(j*2.*pi.*f0.*ts);               %CW信号
k=B/T;  %1000000
s2=exp(j*2.*pi.*(f0-B/2).*ts+j*pi.*k.*ts.*ts);     %LFM信号
Ns=length(ts);%Ns 1000个点
k1=2*pi*f0/c;%波数  125.6637
k2=2*pi*(f0-B/2+k*ts)/c;    %1*1000
% 信号时域=======================================================================
figure(1);
subplot(2,1,1);
plot(ts,real(s1));%取复信号的实部进行画图,如不取实部,系统自动取实部
axis([0 0.005 -1 1]);    %axis([xmin xmax ymin ymax]),单轴xlim([0 5])
xlabel(‘时间/s‘);ylabel(‘幅度‘);title(‘CW信号‘);
subplot(2,1,2);
plot(ts,real(s2));
axis([0 0.005 -1 1]);xlabel(‘时间/s‘);ylabel(‘幅度‘);title(‘LFM信号‘);

技术图片
%信号频谱=================================================================
s1_fft=fft(s1);
s2_fft=fft(s2);
figure(2);
subplot(211);plot(1:length(s1_fft),s1_fft);xlabel(‘\omega/\pi‘);ylabel(‘|e^j^\omega|‘);title(‘CW频域‘);
subplot(212);plot(1:length(s2_fft),s2_fft);xlabel(‘\omega/\pi‘);ylabel(‘|e^j^\omega|‘);title(‘LFM频域‘);

技术图片
X1=abs(fft(s1));%对复信号进行傅里叶变换,然后取模
X2=abs(fft(s2));
X1=X1/max(X1);
X2=X2/max(X2);
figure(3);
subplot(2,1,1);
f=fs*(0:Ns/2)/Ns;
plot(f,X1(1:Ns/2+1));
xlabel(‘频率/Hz‘);ylabel(‘归一化幅值‘);title(‘CW信号频谱‘);grid on;%添加网格
subplot(2,1,2);
f=fs*(0:Ns/2)/Ns;
plot(f,X2(1:Ns/2+1));
xlabel(‘频率/Hz‘);ylabel(‘归一化幅值‘);title(‘LFM信号频谱‘);grid on;

技术图片

%===============================================================

%散射特征函数=============================================
Np=(endt-startt)*fs; %散射系数的点数24000个点,发射信号持续时间内采样的点
for th=startt:1/fs:endt-1/fs   %混响时间 Np24000个点,th共循环44000次
    r2=c*th/2;     %c=1500
    r1=c*(th-T)/2;   %T=0.005
    N=round((r2^2-r1^2)*azm/2); %azm=0.5236(pi/6)方位角
    %%N=As*rou;
    %%A=1;%发射信号的信号强度
    %th=0.08,r2=60,r1=56.25,N=114;...........th=0.3,r2=224.9963,r1=221.2463,N=438
    %随着混响时间的增加,混响点数也在增加
    ain=randn(1,N); %th=0.08时,产生114个随机数
    fai=randn(1,N)*2*pi;   %th=0.08时,产生114个随机相位
    for i=1:N
        p1(i)=ain(i)*exp(j*fai(i));    %th=0.08时,产生114个信号点
        p2(i)=ain(i)*exp(j*fai(i));        % th=0.08时,产生114个信号点
    end
    P1(round((th-startt)*fs)+1)=sum(p1)/r1^2;% 散射系数的时间序列 %P1共44000个点
    P2(round((th-startt)*fs)+1)=sum(p2)/r1^2;
end
% 得到混响信号
R1=conv(s1,P1);%44000+1000-1  %1x44999
R2=conv(s2,P2);
Rr1=real(R1);
Rr2=real(R2);
figure(4);
subplot(2,1,1);
%%t=(0:Ns+Np-2)/fs;
t=startt:1/fs:endt+T-2/fs;%: 共44999个点
plot(t,Rr1/max(Rr1));
axis([startt endt+T-2/fs -1 1]);xlabel(‘时间/s‘);ylabel(‘归一化幅值‘);title(‘CW信号的混响‘);
subplot(2,1,2);
plot(t,Rr2/max(Rr2));
axis([startt endt+T-2/fs -1 1]);xlabel(‘时间/s‘);ylabel(‘归一化幅值‘);title(‘LFM信号的混响‘);

技术图片

%=============================================================

%混响频谱================================================
F1=abs(fft(Rr1));        
F2=abs(fft(Rr2));       
figure(5);
subplot(2,1,1);
f1=fs*(0:(Ns+Np)/2)/(Ns+Np-1);  %1*22500
plot(f1,F1(1:(Ns+Np)/2+1)/max(F1));xlabel(‘频率/Hz‘);ylabel(‘归一化幅值‘);title(‘CW信号的混响频谱‘);
subplot(2,1,2);
f2=fs*(0:(Ns+Np)/2)/(Ns+Np-1);  %1*22500
plot(f2,F2(1:(Ns+Np)/2+1)/max(F2));xlabel(‘频率/Hz‘);ylabel(‘归一化幅值‘);title(‘LFM信号的混响频谱‘);

技术图片

%===============================================================

 %混响功率谱==========================================================
P1=fft(Rr1).*conj(fft(Rr1))/(Ns+Np-1);
P2=fft(Rr2).*conj(fft(Rr2))/(Ns+Np-1);
figure(6);
subplot(2,1,1);
plot(f1,P1(1:(Ns+Np)/2+1)/max(P1));
xlabel(‘频率/Hz‘);ylabel(‘归一化幅值‘);title(‘CW信号的混响功率谱‘);
subplot(2,1,2);
plot(f2,P2(1:(Ns+Np)/2+1)/max(P2));
xlabel(‘频率/Hz‘);ylabel(‘归一化幅值‘);title(‘LFM信号的混响功率谱‘);

技术图片

%=====================================================
%混响时间自相关===================================================
figure(7);
subplot(2,2,1);
Rx1=xcorr(Rr1);
plot(Rx1/max(Rx1));
xlabel(‘采样点数‘);ylabel(‘归一化幅值‘);title(‘CW信号的混响自相关‘);
subplot(2,2,2);
Rx2=xcorr(Rr2);
plot(Rx2/max(Rx2));
xlabel(‘采样点数‘);ylabel(‘归一化幅值‘);title(‘LFM信号的混响自相关‘);
subplot(2,2,3);
Rx1=xcorr(Rr1);
plot(Rx1/max(Rx1));
axis([33080 34120 -1 1]);    %axis([xmin xmax ymin ymax]),单轴xlim([0 5])
xlabel(‘采样点数‘);ylabel(‘归一化幅值‘);title(‘CW信号的混响自相关局部放大‘);
subplot(2,2,4);
Rx2=xcorr(Rr2);
plot(Rx2/max(Rx2));
axis([33570 33630 -1 1]);    %axis([xmin xmax ymin ymax]),单轴xlim([0 5])
xlabel(‘采样点数‘);ylabel(‘归一化幅值‘);title(‘LFM信号的混响自相关局部放大‘);

技术图片

%================================================================
%生成混响瞬时值的概率密度,也可从工作空间的变量中直接查看
figure(8);
p=-1:0.01:1;
subplot(2,1,1);
Rr1g=Rr1/max(Rr1);
hist(Rr1g,p);
%axis([-1 1 0 1000]);    %axis([xmin xmax ymin ymax])
xlim([-1 1]);xlabel(‘归一化幅值‘);ylabel(‘统计点数‘);title(‘CW信号混响瞬时值的概率分布‘);
subplot(2,1,2);
Rr2g=Rr2/max(Rr2);
hist(Rr2g,p);
%axis([-1 1 0 1000]);    %axis([xmin xmax ymin ymax])
xlim([-1 1]);xlabel(‘归一化幅值‘);ylabel(‘统计点数‘);title(‘CW信号混响瞬时值的概率分布‘);

技术图片

%==================================================================
%生成混响包络的概率密度函数
figure(9);
q=0:0.01:1;
subplot(2,1,1);
hist(abs(R1)/max(abs(R1)),q);
%axis([0 1 0 1000]);    %axis([xmin xmax ymin ymax])
xlim([0 1]);
xlabel(‘归一化幅值‘);ylabel(‘统计点数‘);title(‘CW信号混响包络的概率分布‘);
subplot(2,1,2);
hist(abs(R2)/max(abs(R2)),q);
%axis([0 1 0 1000]);    %axis([xmin xmax ymin ymax])
xlim([0 1]);
xlabel(‘归一化幅值‘);ylabel(‘统计点数‘);title(‘CW信号混响包络的概率分布‘);

技术图片

无多普勒频移的海底混响单元散射模型卷积法

标签:模型   nbsp   增加   figure   单元   卷积   for   com   abs   

原文地址:https://www.cnblogs.com/kiki--xiunai/p/10801026.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!