标签:方式 median 深度 das mat 部分 repr 包括 出错
特征选择的目标是寻找最优特征子集。特征选择能剔除不相关(irrelevant)或冗余(redundant )的特征,从而达到减少特征个数,提高模型精确度,减少运行时间的目的。另一方面,选取出真正相关的特征简化模型,协助理解数据产生的过程。
(1)子集产生:按照一定的搜索策略产生候选特征子集;(2)子集评估:通过某个评价函数评估特征子集的优劣;
(3)停止条件:决定特征选择算法什么时候停止;(4)子集验证:用于验证最终所选的特征子集的有效性。
特征选择的搜索策略分为:完全搜索策略、启发式策略以及随机搜索策略。
特征选择本质上是一个组合优化问题,求解组合优化问题最直接的方法就是搜索,理论上可以通过穷举法来搜索所有可能的特征组合,选择使得评价标准最优的特征子集作为最后的输出,
但是n个特征的搜索空间为2n,穷举法的运算量随着特征维数的增加呈指数递增,实际应用中经常碰到几百甚至成千上万个特征,因此穷举法虽然简单却难以实际应用。
其他的搜索方法有启发式的搜索和随机搜索,这些搜索策略可以在运算效率和特征子集质量之间寻找到一个较好的平衡点,而这也是众多特征选择算法努力的目标。
广度优先遍历特征子空间。枚举所有组合,穷举搜索,实用性不高。
2. 分支限界搜索( Branch and Bound )
穷举基础上加入分支限界。例如:剪掉某些不可能搜索出比当前最优解更优的分支。
其他,如定向搜索 (Beam Search ),最优优先搜索 ( Best First Search )等
随机产生一个特征子集,然后在该子集上执行SFS与SBS算法。
2.模拟退火算法( SA, Simulated Annealing )
以一定的概率来接受一个比当前解要差的解,而且这个概率随着时间推移逐渐降低
3.遗传算法( GA, Genetic Algorithms )
特征选择和机器学习算法两者存在紧密的联系,根据特征选择中子集评价标准和后续学习算法的结合方式可分为嵌入式(Embedded)、过滤式(Filter)和封装式(Wrapper)式三种。
特征选择主要有两个目的:
拿到数据集,一个特征选择方法,往往很难同时完成这两个目的。通常情况下,选择一种自己最熟悉或者最方便的特征选择方法(往往目的是降维,而忽略了对特征和数据理解的目的)。
假设某特征的特征值只有0和1,并且在所有输入样本中,95%的实例的该特征取值都是1,那就可以认为这个特征作用不大。如果100%都是1,那这个特征就没意义了。当特征值都是离散型变量的时候这种方法才能用,如果是连续型变量,就需要将连续变量离散化之后才能用。而且实际当中,一般不太会有95%以上都取某个值的特征存在,所以这种方法虽然简单但是不太好用。可以把它作为特征选择的预处理,先去掉那些取值变化小的特征,然后再从接下来提到的的特征选择方法中选择合适的进行进一步的特征选择。
from sklearn.feature_selection import VarianceThreshold X = [[0, 0, 1], [0, 1, 0], [1, 0, 0], [0, 1, 1], [0, 1, 0], [0, 1, 1]] sel = VarianceThreshold(threshold=(.8 * (1 - .8))) sel.fit_transform(X) array([[0, 1], [1, 0], [0, 0], [1, 1], [1, 0], [1, 1]])
VarianceThreshold 移除了第一列特征,第一列中特征值为0的概率达到了5/6.
单变量特征选择的原理是分别单独的计算每个变量的某个统计指标,根据该指标来判断哪些指标重要,剔除那些不重要的指标。
对于分类问题(y离散),可采用:
卡方检验,f_classif, mutual_info_classif,互信息
对于回归问题(y连续),可采用:
皮尔森相关系数,f_regression, mutual_info_regression,最大信息系数
这种方法比较简单,易于运行,易于理解,通常对于理解数据有较好的效果(但对特征优化、提高泛化能力来说不一定有效)。这种方法有许多改进的版本、变种。
单变量特征选择基于单变量的统计测试来选择最佳特征。它可以看作预测模型的一项预处理。==Scikit-learn将特征选择程序用包含 transform 函数的对象来展现==:
将特征输入到评分函数,返回一个单变量的f_score(F检验的值)或p-values(P值,假设检验中的一个标准,P-value用来和显著性水平作比较),注意SelectKBest 和 SelectPercentile只有得分,没有p-value。
经典的卡方检验是检验定性自变量对定性因变量的相关性。比如,我们可以对样本进行一次chi2chi2 测试来选择最佳的两项特征:
from sklearn.datasets import load_iris from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import chi2 iris = load_iris() X, y = iris.data, iris.target X.shape (150, 4) X_new = SelectKBest(chi2, k=2).fit_transform(X, y) X_new.shape (150, 2)
皮尔森相关系数是一种最简单的,能帮助理解特征和响应变量之间关系的方法,该方法衡量的是变量之间的线性相关性,结果的取值区间为[-1,1],-1表示完全的负相关,+1表示完全的正相关,0表示没有线性相关。
Pearson Correlation速度快、易于计算,经常在拿到数据(经过清洗和特征提取之后的)之后第一时间就执行。Scipy的 pearsonr 方法能够同时计算 相关系数 和p-value.
import numpy as np from scipy.stats import pearsonr np.random.seed(0) size = 300 x = np.random.normal(0, 1, size) # pearsonr(x, y)的输入为特征矩阵和目标向量 print("Lower noise", pearsonr(x, x + np.random.normal(0, 1, size))) print("Higher noise", pearsonr(x, x + np.random.normal(0, 10, size))) >>> # 输出为二元组(sorce, p-value)的数组 Lower noise (0.71824836862138386, 7.3240173129992273e-49) Higher noise (0.057964292079338148, 0.31700993885324746)
比较了变量在加入噪音之前和之后的差异。当噪音比较小的时候,相关性很强,p-value很低。
Scikit-learn提供的 f_regrssion 方法能够批量计算特征的f_score和p-value,非常方便,参考sklearn的 pipeline
Pearson相关系数的一个明显缺陷是,作为特征排序机制,他只对线性关系敏感。如果关系是非线性的,即便两个变量具有一一对应的关系,Pearson相关性也可能会接近0。例如:
x = np.random.uniform(-1, 1, 100000) print(pearsonr(x, x**2)[0]) -0.00230804707612
更多类似的例子参考 sample plots 。另外,如果仅仅根据相关系数这个值来判断的话,有时候会具有很强的误导性,如 Anscombe’s quartet ,最好把数据可视化出来,以免得出错误的结论。
经典的互信息(互信息为随机变量X与Y之间的互信息I(X;Y)I(X;Y)为单个事件之间互信息的数学期望)也是评价定性自变量对定性因变量的相关性的,互信息计算公式如下:
互信息直接用于特征选择其实不是太方便:1、它不属于度量方式,也没有办法归一化,在不同数据及上的结果无法做比较;2、对于连续变量的计算不是很方便(X和Y都是集合,x,y都是离散的取值),通常变量需要先离散化,而互信息的结果对离散化的方式很敏感。
最大信息系数克服了这两个问题。它首先寻找一种最优的离散化方式,然后把互信息取值转换成一种度量方式,取值区间在[0,1]。 minepy 提供了MIC功能。
反过头来看y=x^2这个例子,MIC算出来的互信息值为1(最大的取值)。
from minepy import MINE m = MINE() x = np.random.uniform(-1, 1, 10000) m.compute_score(x, x**2) print(m.mic()) >>>1.0
MIC的统计能力遭到了 一些质疑 ,当零假设不成立时,MIC的统计就会受到影响。在有的数据集上不存在这个问题,但有的数据集上就存在这个问题。
距离相关系数是为了克服Pearson相关系数的弱点而生的。在xx和x2x2这个例子中,即便Pearson相关系数是0,我们也不能断定这两个变量是独立的(有可能是非线性相关);但如果距离相关系数是0,那么我们就可以说这两个变量是独立的。
R的 energy 包里提供了距离相关系数的实现,另外这是 Python gist 的实现。
> x = runif (1000, -1, 1) > dcor(x, x**2) [1] 0.4943864
尽管有 MIC 和 距离相关系数 在了,但当变量之间的关系接近线性相关的时候,Pearson相关系数仍然是不可替代的。
第一,Pearson相关系数计算速度快,这在处理大规模数据的时候很重要。
第二,Pearson相关系数的取值区间是[-1,1],而MIC和距离相关系数都是[0,1]。这个特点使得Pearson相关系数能够表征更丰富的关系,符号表示关系的正负,绝对值能够表示强度。当然,Pearson相关性有效的前提是两个变量的变化关系是单调的。
这种方法的思路是直接使用你要用的机器学习算法,针对 每个单独的特征 和 响应变量建立预测模型。假如 特征 和 响应变量 之间的关系是非线性的,可以用基于树的方法(决策树、随机森林)、或者 扩展的线性模型 等。基于树的方法比较易于使用,因为他们对非线性关系的建模比较好,并且不需要太多的调试。但要注意过拟合问题,因此树的深度最好不要太大,再就是运用交叉验证。
在 波士顿房价数据集 上使用sklearn的 随机森林回归 给出一个_单变量选择_的例子(这里使用了交叉验证):
from sklearn.cross_validation import cross_val_score, ShuffleSplit from sklearn.datasets import load_boston from sklearn.ensemble import RandomForestRegressor import numpy as np # Load boston housing dataset as an example boston = load_boston() X = boston["data"] Y = boston["target"] names = boston["feature_names"] rf = RandomForestRegressor(n_estimators=20, max_depth=4) scores = [] # 单独采用每个特征进行建模,并进行交叉验证 for i in range(X.shape[1]): score = cross_val_score(rf, X[:, i:i+1], Y, scoring="r2", # 注意X[:, i]和X[:, i:i+1]的区别 cv=ShuffleSplit(len(X), 3, .3)) scores.append((format(np.mean(score), ‘.3f‘), names[i])) print(sorted(scores, reverse=True))
[(‘0.620‘, ‘LSTAT‘), (‘0.591‘, ‘RM‘), (‘0.467‘, ‘NOX‘), (‘0.342‘, ‘INDUS‘), (‘0.305‘, ‘TAX‘), (‘0.240‘, ‘PTRATIO‘), (‘0.206‘, ‘CRIM‘), (‘0.187‘, ‘RAD‘), (‘0.184‘, ‘ZN‘), (‘0.135‘, ‘B‘), (‘0.082‘, ‘DIS‘), (‘0.020‘, ‘CHAS‘), (‘0.002‘, ‘AGE‘)]
递归消除特征法使用一个基模型来进行多轮训练,每轮训练后,移除若干权值系数的特征,再基于新的特征集进行下一轮训练。
sklearn官方解释:对特征含有权重的预测模型(例如,线性模型对应参数coefficients),RFE通过递归减少考察的特征集规模来选择特征。首先,预测模型在原始特征上训练,每个特征指定一个权重。之后,那些拥有最小绝对值权重的特征被踢出特征集。如此往复递归,直至剩余的特征数量达到所需的特征数量。
RFECV 通过交叉验证的方式执行RFE,以此来选择最佳数量的特征:对于一个数量为d的feature的集合,他的所有的子集的个数是2的d次方减1(包含空集)。指定一个外部的学习算法,比如SVM之类的。通过该算法计算所有子集的validation error。选择error最小的那个子集作为所挑选的特征。
from sklearn.feature_selection import RFE from sklearn.linear_model import LogisticRegression #递归特征消除法,返回特征选择后的数据 #参数estimator为基模型 #参数n_features_to_select为选择的特征个数 RFE(estimator=LogisticRegression(), n_features_to_select=2).fit_transform(iris.data, iris.target)
示例:
Recursive feature elimination: 一个递归特征消除的示例,展示了在数字分类任务中,像素之间的相关性。
Recursive feature elimination with cross-validation: 一个递归特征消除示例,通过交叉验证的方式自动调整所选特征的数量。
单变量特征选择方法独立的衡量每个特征与响应变量之间的关系,另一种主流的特征选择方法是基于机器学习模型的方法。有些机器学习方法本身就具有对特征进行打分的机制,或者很容易将其运用到特征选择任务中,例如回归模型,SVM,决策树,随机森林等等。其实Pearson相关系数等价于线性回归里的标准化回归系数。
SelectFromModel 作为meta-transformer,能够用于拟合后任何拥有coef_
或feature_importances_
属性的预测模型。 如果特征对应的coef_
或 feature_importances_
值低于设定的阈值threshold
,那么这些特征将被移除。除了手动设置阈值,也可通过字符串参数调用内置的启发式算法(heuristics)来设置阈值,包括:平均值(“mean”), 中位数(“median”)以及他们与浮点数的乘积,如”0.1*mean”。
使用L1范数作为惩罚项的线性模型(Linear models)会得到稀疏解:大部分特征对应的系数为0。当你希望减少特征的维度以用于其它分类器时,可以通过 feature_selection.SelectFromModel
来选择不为0的系数。特别指出,常用于此目的的稀疏预测模型有 linear_model.Lasso
(回归), linear_model.LogisticRegression 和 svm.LinearSVC(分类):
from sklearn.svm import LinearSVC
from sklearn.datasets import load_iris
from sklearn.feature_selection import SelectFromModel
iris = load_iris()
X, y = iris.data, iris.target
X.shape
(150, 4)
lsvc = LinearSVC(C=0.01, penalty="l1", dual=False).fit(X, y)
model = SelectFromModel(lsvc, prefit=True)
X_new = model.transform(X)
X_new.shape
(150, 3)
使用feature_selection库的SelectFromModel类结合带L1以及L2惩罚项的逻辑回归模型:
from sklearn.feature_selection import SelectFromModel #带L1和L2惩罚项的逻辑回归作为基模型的特征选择 #参数threshold为权值系数之差的阈值 SelectFromModel(LR(threshold=0.5, C=0.1)).fit_transform(iris.data, iris.target)
对于SVM和逻辑回归,参数C控制稀疏性:C越小,被选中的特征越少。对于Lasso,参数alpha越大,被选中的特征越少。
示例:
Classification of text documents using sparse features: 不同算法使用基于L1的特征选择进行文档分类的对比。
Note:
L1恢复和压缩感知 (L1-recovery and compressive sensing)
对于一个好的alpha值,在满足特定条件下, Lasso 仅使用少量观测值就能够完全恢复出非零的系数。特别地,样本的数量需要“足够大”,否则L1模型的表现会充满随机性,所谓“足够大”取决于非零系数的数量,特征数量的对数,噪声的数量,非零系数的最小绝对值以及设计矩阵X的结构。此外,设计矩阵必须拥有特定的属性,比如不能太过相关(correlated)。 对于非零系数的恢复,还没有一个选择alpha值的通用规则 。alpha值可以通过交叉验证来设置(LassoCV or LassoLarsCV),尽管这也许会导致模型欠惩罚(under-penalized):引入少量非相关变量不会影响分数预测。相反BIC (LassoLarsIC) 更倾向于设置较大的alpha值。
Reference Richard G. Baraniuk “Compressive Sensing”, IEEE Signal Processing Magazine [120] July 2007
基于L1的稀疏模型的局限在于,当面对一组互相关的特征时,它们只会选择其中一项特征。为了减轻该问题的影响可以使用随机化技术,通过_多次重新估计稀疏模型来扰乱设计矩阵_,或通过_多次下采样数据来统计一个给定的回归量被选中的次数_。——==稳定性选择 (Stability Selection)==
RandomizedLasso 实现了使用这项策略的Lasso,RandomizedLogisticRegression 使用逻辑回归,适用于分类任务。要得到整个迭代过程的稳定分数,你可以使用 lasso_stability_path
。
注意到对于非零特征的检测,要使随机稀疏模型比标准F统计量更有效, 那么模型的参考标准需要是稀疏的,换句话说,非零特征应当只占一小部分。
示例:
Sparse recovery: feature selection for sparse linear models: 比较了不同的特征选择方法,并讨论了它们各自适用的场合。
示例:
Feature importances with forests of trees: 从模拟数据中恢复有意义的特征。
Pixel importances with a parallel forest of trees: 用于人脸识别数据的示例。
特征选择常常被当作学习之前的一项预处理。在scikit-learn中推荐使用sklearn.pipeline.Pipeline
:
clf = Pipeline([ (‘feature_selection‘, SelectFromModel(LinearSVC(penalty="l1"))), (‘classification‘, RandomForestClassifier()) ]) clf.fit(X, y)
在此代码片段中,将 sklearn.svm.LinearSVC 和 sklearn.feature_selection.SelectFromModel 结合来评估特征的重要性,并选择最相关的特征。之后 sklearn.ensemble.RandomForestClassifier 模型使用转换后的输出训练,即只使用被选出的相关特征。你可以选择其它特征选择方法,或是其它提供特征重要性评估的分类器。更多详情见 sklearn.pipeline.Pipeline 相关示例。
关于更多,参见另一个文档:
《基于模型的特征选择详解 (Embedded & Wrapper)》
小结:
类 | 所属方式 | 说明 |
---|---|---|
VarianceThreshold | Filter | 方差选择法(移除低方差的特征) |
SelectKBest | Filter | 可选关联系数、卡方校验、最大信息系数作为得分计算的方法 |
RFE | Wrapper | 递归地训练基模型,将权值系数较小的特征从特征集合中消除 |
SelectFromModel | Embedded | 训练基模型,选择权值系数较高的特征 |
标签:方式 median 深度 das mat 部分 repr 包括 出错
原文地址:https://www.cnblogs.com/wqbin/p/10805648.html