标签:add float mib sign aaaaaa line for point 需要
\[ Time Limit: 1 s \quad Memory Limit: 256 MiB \]
给出\(n\)个大点,和\(m\)个小点,然后问有多少个小点可以在任意一个\(3\)个大点组成的三角形内。
很明显只要对大点求凸包,然后判断有多少个在凸包里的小点就可以了,但是判断点在凸包内如果用\(O(N)\)的方法会\(TLE\),需要进行二分。
我求出的是逆时针的凸包,然后定下一个端点\(p[1]\),寻找另外两个端点\(p[id]\)和\(p[id+1]\),根据查询的点在\(p[1]-p[id]\)这条直线右侧或者在\(p[1]-p[id+1]\)这个点左侧来二分范围,如果在\(p[1]-p[id]\)和\(p[1]-p[id+1]\)之间,那么在判断是否在\(p[id]-p[id+1]\)左侧来判断是否在凸包内。
/***************************************************************
> File Name : J.cpp
> Author : Jiaaaaaaaqi
> Created Time : 2019年05月06日 星期一 18时14分21秒
***************************************************************/
#include <map>
#include <set>
#include <list>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <cfloat>
#include <string>
#include <vector>
#include <cstdio>
#include <bitset>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define lowbit(x) x & (-x)
#define mes(a, b) memset(a, b, sizeof a)
#define fi first
#define se second
#define pii pair<int, int>
#define INOPEN freopen("in.txt", "r", stdin)
#define OUTOPEN freopen("out.txt", "w", stdout)
typedef unsigned long long int ull;
typedef long long int ll;
const int maxn = 5e4 + 10;
const int maxm = 1e5 + 10;
const ll mod = 1e9 + 7;
const ll INF = 1e18 + 100;
const int inf = 0x3f3f3f3f;
const double pi = acos(-1.0);
const double eps = 1e-8;
using namespace std;
int n, m;
int cas, tol, T;
int sgn(double x) {
if(fabs(x) <= eps) return 0;
else return x>0 ? 1 : -1;
}
struct Point {
double x, y;
Point() {}
inline Point(double _x, double _y) {
x = _x, y = _y;
}
inline Point operator - (Point a) const {
return Point(x-a.x, y-a.y);
}
inline double operator ^ (Point a) const {
return x*a.y - y*a.x;
}
inline double distance(Point p) const {
return hypot(x-p.x, y-p.y);
}
inline bool operator < (Point a) const {
return sgn(y-a.y)==0 ? sgn(x-a.x)<0 : y<a.y;
}
inline bool operator == (Point a) const {
return sgn(x-a.x)==0 && sgn(y-a.y)==0;
}
inline double operator * (Point a) const {
return x*a.x + y*a.y;
}
};
struct Line {
Point s, e;
Line() {}
Line(Point _s, Point _e) {
s = _s, e = _e;
}
inline bool pointseg(Point p) {
return sgn((p-s)^(e-s)) == 0 && sgn((p-s)*(p-e)) <=0;
}
};
struct Polygon {
int n;
Point p[maxn];
Line l[maxn];
inline void add(Point q) {
p[++n] = q;
}
struct cmp {
Point p;
cmp(Point _p) {
p = _p;
}
bool operator() (Point _a, Point _b) const {
Point a = _a, b = _b;
int d = sgn((a-p)^(b-p));
if(d == 0) {
return sgn(a.distance(p) - b.distance(p)) < 0;
} else {
return d>0;
}
}
};
void norm() {
int id = 1;
for(int i=2; i<=n; ++i) {
if(p[i] < p[id])
id = i;
}
swap(p[id], p[1]);
sort(p+1, p+1+n, cmp(p[1]));
}
void Graham(Polygon &convex) {
norm();
mes(convex.p, 0);
int &top = convex.n = 0;
if(n == 1) {
convex.p[++top] = p[1];
} else if(n == 2) {
convex.p[++top] = p[1];
convex.p[++top] = p[2];
if(convex.p[1] == convex.p[2]) top--;
} else {
convex.p[++top] = p[1];
convex.p[++top] = p[2];
for(int i=3; i<=n; ++i) {
while(top>1 && sgn((convex.p[top]-convex.p[top-1])^
(p[i]-convex.p[top-1])) <= 0)
top--;
convex.p[++top] = p[i];
}
if(top == 2 && convex.p[1] == convex.p[2])
top--;
}
}
void getline() {
for(int i=1; i<=n; ++i) {
l[i] = Line(p[i], p[i%n+1]);
}
}
int inconvex(Point s) {
/*
点和凸包的关系
2 边上
1 内部
0 外部
*/
Point p1 = p[1];
Line l1 = Line(p[1], p[2]);
Line l2 = Line(p[1], p[n]);
if(l1.pointseg(s) || l2.pointseg(s))
return 2;
int l = 2, r = n-1;
while(l<=r) {
int mid = l+r>>1;
int t1 = sgn((s-p1)^(p[mid]-p1));
int t2 = sgn((s-p1)^(p[mid+1]-p1));
if(t1 <= 0 && t2 >= 0) {
int t3 = sgn((s-p[mid]) ^ (p[mid+1]-p[mid]));
if(t3 < 0) return 1;
else if(t3 == 0) return 2;
return 0;
}
if(t1 > 0) r = mid-1;
else l = mid+1;
}
return 0;
}
} large, small, con;
inline int read() {
int x = 0, f = 1;
char s = getchar();
while (s < '0' || s > '9') {
if (s == '-')f = -1;
s = getchar();
}
while (s >= '0' && s <= '9') {
x = x * 10 + s - '0';
s = getchar();
}
return x * f;
}
int main() {
n = read();
large.n = small.n = con.n = 0;
int x, y;
for(int i=1; i<=n; ++i) {
x = read(), y =read();
large.add(Point(1.0*x, 1.0*y));
}
m = read();
for(int i=1; i<=m; ++i) {
x = read(), y =read();
small.add(Point(1.0*x, 1.0*y));
}
large.norm();
large.Graham(con);
int ans = 0;
for(int i=1; i<=m; ++i) {
if(con.inconvex(small.p[i])) {
ans++;
}
}
printf("%d\n", ans);
return 0;
}
Saint John Festival Gym - 101128J (凸包二分)
标签:add float mib sign aaaaaa line for point 需要
原文地址:https://www.cnblogs.com/Jiaaaaaaaqi/p/10821232.html