码迷,mamicode.com
首页 > 其他好文 > 详细

子空间投影

时间:2019-05-07 14:26:55      阅读:133      评论:0      收藏:0      [点我收藏+]

标签:列空间   nbsp   解决方案   空间   中间   向量   解决   注意   零空间   

如何解一个无解的方程 $Ax=b$ 的解

基础的的解决方案是:

$A^TA \hat{x} = A^T b$

rank ($A^TA$) = rank($A$), Null($A^TA$)= Null($A$)

换句话说,如果A是列满秩的,即零空间里只有0向量,那么$A^TA$可逆的。


此时,子空间投影可以被运用求解近似解。

在一维情况下,投影变量 $p$, 投影矩阵 $P$,被投影变量 $b$, 投影方向 $a$, 那么有:

$p=Pb=\frac{aa^T}{a^Ta}b$

在多维情况下,投影变量用 $A$ 替代, 那么投影变换则为:

$p=Pb=A(A^TA)^{-1}A^Tb$

注意的是,这里中间的括号是不能拆开的,因为 $A$ 不一定是可逆方阵,如果 $A$ 为可逆方阵,那么投影矩阵为单位矩阵 $I$,即方程组本身有解,无需投影 $b$ 也在 $A$ 的列空间里。

 

子空间投影

标签:列空间   nbsp   解决方案   空间   中间   向量   解决   注意   零空间   

原文地址:https://www.cnblogs.com/sybear/p/10825103.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!