标签:假设 分析 投影矩阵 must 最小 回归分析 ble ast 方案
一个最小二乘法的例子:
三个点分别是 $(1,1), (2,2),(3,2)$. 对这三个点进行回归分析,假设以下的方程:
$$ y = C + D t$$
那么有矩阵运算:
$$\begin{bmatrix} 1& 1 \\ 1 & 2 \\1 & 3 \end{bmatrix}\begin{bmatrix} C\\D \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\2 \end{bmatrix}$$
显然这个方程是不可解的。最小二乘法求解最优值的方案在于
$$\Vert Ax-b \Vert ^2 = \Vert e \Vert ^2 = e^2_1+e^2_2+e^2_3$$
At last, if we have the matrix $A$ which has independent columns, then $A^TA$ is invertible. Or we can say, suppose $A^TAx = 0$, $x$ must be $0$.
Proof: $$x^TA^TAx = 0 \to (Ax)^TAx = 0$$
then we have $Ax=0$. Considering that $A$ has independent columns, $x$ must be $0$.
标签:假设 分析 投影矩阵 must 最小 回归分析 ble ast 方案
原文地址:https://www.cnblogs.com/sybear/p/10834658.html