标签:span size problem begin turn vector answer 8 8 ack
Problem Statement
There is an integer sequence A of length N.
Find the number of the pairs of integers l and r (1≤l≤r≤N) that satisfy the following condition:
Here, xor denotes the bitwise exclusive OR.
Definition of XOR
Constraints
Input
Input is given from Standard Input in the following format:
N A1 A2 … AN
Output
Print the number of the pairs of integers l and r (1≤l≤r≤N) that satisfy the condition.
Sample Input 1
4 2 5 4 6
Sample Output 1
5
(l,r)=(1,1),(2,2),(3,3),(4,4) clearly satisfy the condition. (l,r)=(1,2) also satisfies the condition, since A1 xor A2=A1 + A2=7. There are no other pairs that satisfy the condition, so the answer is 5.
Sample Input 2
9 0 0 0 0 0 0 0 0 0
Sample Output 2
45
Sample Input 3
19 885 8 1 128 83 32 256 206 639 16 4 128 689 32 8 64 885 969 1
Sample Output 3
37
题意:
给你一个含有N个整数的数组,
让你求出有多少对l和r,使之 a[l]+...+a[r] = a[l]^... ^a[r]
即让你找出有多少对l和r,使数组的l~r的前缀和和异或和相等。
思路:
我们知道这样的结论,
对于一个数组,他的异或前缀和有和sum前缀和类似的性质。
即我们用一个数组 prexor[i]来维护从1~i数组的异或值,那么 l~r的异或值可以表示为
prexor[r]^prexor[l-1]
并且异或和sum和有这样的性质,
即如果l~r 数组 a[l]~a[r] 的sum和与a[l]^……^a[r]的异或值不同时,那么l与任意一个r以及r之后的i。
不会满足 l到i的sum和与异或和相同 。因为前一会有不满足的情况,后继的数组无论如何也不可能满足。
那么我们来看本题,
我们就可以通过上面的这个性质和利用双指针的常用套路方法:
对于每一个l,求出使之使其满足sum和与异或和相等的最右边的r。
那么以l为左端点的pair个数就是 r-l+1个
,然后我们把 l向右移动一位,同时删除 a[l]对sum和以及异或和的贡献。
然后对于新的l,我们只需要从上一个状态的r继续向后判定是否符合即可。(因为l~r满足的话,l+1~r一定也满足)
直至l大于n的时候跳出操作,输出答案即可。
细节见代码:
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include <queue> #include <stack> #include <map> #include <set> #include <vector> #include <iomanip> #define ALL(x) (x).begin(), (x).end() #define rt return #define dll(x) scanf("%I64d",&x) #define xll(x) printf("%I64d\n",x) #define sz(a) int(a.size()) #define all(a) a.begin(), a.end() #define rep(i,x,n) for(int i=x;i<n;i++) #define repd(i,x,n) for(int i=x;i<=n;i++) #define pii pair<int,int> #define pll pair<long long ,long long> #define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0) #define MS0(X) memset((X), 0, sizeof((X))) #define MSC0(X) memset((X), ‘\0‘, sizeof((X))) #define pb push_back #define mp make_pair #define fi first #define se second #define eps 1e-6 #define gg(x) getInt(&x) #define db(x) cout<<"== [ "<<x<<" ] =="<<endl; using namespace std; typedef long long ll; ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;} ll lcm(ll a, ll b) {return a / gcd(a, b) * b;} ll powmod(ll a, ll b, ll MOD) {ll ans = 1; while (b) {if (b % 2)ans = ans * a % MOD; a = a * a % MOD; b /= 2;} return ans;} inline void getInt(int* p); const int maxn = 1000010; const int inf = 0x3f3f3f3f; /*** TEMPLATE CODE * * STARTS HERE ***/ int a[maxn]; int n; ll ans = 0ll; int main() { //freopen("D:\\common_text\\code_stream\\in.txt","r",stdin); //freopen("D:\\common_text\\code_stream\\out.txt","w",stdout); gbtb; cin >> n; repd(i, 1, n) { cin >> a[i]; } // ans=n; ll sum = 0ll; ll xo = 0ll; int l = 1; int r = 0; ll cnt = 0ll; while (1) { while (r < n && sum + a[r + 1] == (xo ^ a[r + 1])) { r++; sum += a[r]; xo ^= a[r]; } cnt = r - l + 1; // ans+=(cnt*(cnt+1))/2; ans += cnt; sum -= a[l]; xo ^= a[l++]; if (l == n + 1) { break; } } cout << ans << endl; return 0; } inline void getInt(int* p) { char ch; do { ch = getchar(); } while (ch == ‘ ‘ || ch == ‘\n‘); if (ch == ‘-‘) { *p = -(getchar() - ‘0‘); while ((ch = getchar()) >= ‘0‘ && ch <= ‘9‘) { *p = *p * 10 - ch + ‘0‘; } } else { *p = ch - ‘0‘; while ((ch = getchar()) >= ‘0‘ && ch <= ‘9‘) { *p = *p * 10 + ch - ‘0‘; } } }
Xor Sum 2 AtCoder - 4142 (异或前缀和性质+ 双指针)
标签:span size problem begin turn vector answer 8 8 ack
原文地址:https://www.cnblogs.com/qieqiemin/p/10843599.html