标签:math bsp rac 连通 name opera The mat 换算
Push-DIGing Algorithm
For $k=0,1,2, \cdots$ do
$\mathbf{u}(k+1)=\mathbf{C}(k)(\mathbf{u}(k)-\alpha \mathbf{y}(k))$
$\mathbf{v}(k+1)=\mathbf{C}(k) \mathbf{v}(k) ; \mathbf{V}(k+1)=\operatorname{diag}\{\mathbf{v}(k+1)\}$
$\mathbf{x}(k+1)=(\mathbf{V}(k+1))^{-1} \mathbf{u}(k+1)$
$\mathbf{y}(k+1)=\mathbf{C}(k) \mathbf{y}(k)+\nabla \mathbf{f}(\mathbf{x}(k+1))-\nabla \mathbf{f}(\mathbf{x}(k))$
end for
假设1:B连通性假设
$G^{dir}_{\tilde{B}_{\ominus}}(t\tilde{B}_{\ominus}) \triangleq $ $\{ V, \cup^{(t+1)\tilde{B}_{\ominus}-1}_{l=t \tilde{B}_{\ominus}}A(l)\}$
假设2:混合矩阵假设
$C_{i j}(k)=\frac{1}{d_{j}^{\mathrm{out}}(k)+1}$ ,otherwise $C_{ij}(k)=0$
变换算法:
$\mathbf{v}(k+1)=\mathbf{C}(k) \mathbf{v}(k), \mathbf{V}(k+1)=\operatorname{diag}\{\mathbf{v}(k+1)\}$
$ \mathbf{x}(k+1)=\widetilde{\mathbf{R}}(k)(\mathbf{x}(k)-\alpha \mathbf{h}(k))$
$\mathbf{h}(k+1)=\widetilde{\mathbf{R}}(k) \mathbf{h}(k)+(\mathbf{V}(k+1))^{-1}(\nabla \mathbf{f}(\mathbf{x}(k+1))-\nabla \mathbf{f}(\mathbf{x}(k)))$
标签:math bsp rac 连通 name opera The mat 换算
原文地址:https://www.cnblogs.com/sybear/p/10848854.html