码迷,mamicode.com
首页 > 其他好文 > 详细

Push-Diging

时间:2019-05-11 16:24:05      阅读:115      评论:0      收藏:0      [点我收藏+]

标签:math   bsp   rac   连通   name   opera   The   mat   换算   

Push-DIGing Algorithm


For $k=0,1,2, \cdots$ do

      $\mathbf{u}(k+1)=\mathbf{C}(k)(\mathbf{u}(k)-\alpha \mathbf{y}(k))$

      $\mathbf{v}(k+1)=\mathbf{C}(k) \mathbf{v}(k) ; \mathbf{V}(k+1)=\operatorname{diag}\{\mathbf{v}(k+1)\}$

      $\mathbf{x}(k+1)=(\mathbf{V}(k+1))^{-1} \mathbf{u}(k+1)$

      $\mathbf{y}(k+1)=\mathbf{C}(k) \mathbf{y}(k)+\nabla \mathbf{f}(\mathbf{x}(k+1))-\nabla \mathbf{f}(\mathbf{x}(k))$

end for


 假设1:B连通性假设

         $G^{dir}_{\tilde{B}_{\ominus}}(t\tilde{B}_{\ominus}) \triangleq $ $\{ V, \cup^{(t+1)\tilde{B}_{\ominus}-1}_{l=t \tilde{B}_{\ominus}}A(l)\}$

假设2:混合矩阵假设

         $C_{i j}(k)=\frac{1}{d_{j}^{\mathrm{out}}(k)+1}$ ,otherwise $C_{ij}(k)=0$


 变换算法:

   $\mathbf{v}(k+1)=\mathbf{C}(k) \mathbf{v}(k), \mathbf{V}(k+1)=\operatorname{diag}\{\mathbf{v}(k+1)\}$

   $ \mathbf{x}(k+1)=\widetilde{\mathbf{R}}(k)(\mathbf{x}(k)-\alpha \mathbf{h}(k))$

   $\mathbf{h}(k+1)=\widetilde{\mathbf{R}}(k) \mathbf{h}(k)+(\mathbf{V}(k+1))^{-1}(\nabla \mathbf{f}(\mathbf{x}(k+1))-\nabla \mathbf{f}(\mathbf{x}(k)))$


 

Push-Diging

标签:math   bsp   rac   连通   name   opera   The   mat   换算   

原文地址:https://www.cnblogs.com/sybear/p/10848854.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!