标签:ecif module ret near turn over 代码实现 square features
1.什么是Pytorch,为什么选择Pytroch?
2.Pytroch的安装
3.配置Python环境
4.准备Python管理器
5.通过命令行安装PyTorch
6.PyTorch基础概念
GPU云服务器默认提供了pytorch的环境,
7.通用代码实现流程(实现一个深度学习的代码流程)
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# 1 input image channel, 6 output channels, 5x5 square convolution
# kernel
self.conv1 = nn.Conv2d(1, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
# an affine operation: y = Wx + b
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
# Max pooling over a (2, 2) window
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
# If the size is a square you can only specify a single number
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def num_flat_features(self, x):
size = x.size()[1:] # all dimensions except the batch dimension
num_features = 1
for s in size:
num_features *= s
return num_features
标签:ecif module ret near turn over 代码实现 square features
原文地址:https://www.cnblogs.com/lky520hs/p/10843956.html