标签:线性时间 二进制 http tor 操作 元素 解答 对应关系 tco
给定一个非空整数数组,除了某个元素只出现一次以外,其余每个元素均出现了三次。找出那个只出现了一次的元素。
说明:
你的算法应该具有线性时间复杂度。 你可以不使用额外空间来实现吗?
示例 1:
输入: [2,2,3,2] 输出: 3
示例 2:
输入: [0,1,0,1,0,1,99] 输出: 99
解答:参考博客http://www.cnblogs.com/grandyang/p/4263927.html
我们把数组中数字的每一位累加起来对3取余,剩下的结果就是那个单独数组该位上的数字,由于我们累加的过程都要对3取余,那么每一位上累加的过程就是0->1->2->0,换成二进制的表示为00->01->10->00,那么我们可以写出对应关系:
00 (+) 1 = 01
01 (+) 1 = 10
10 (+) 1 = 00 ( mod 3)
那么我们用ab来表示开始的状态,对于加1操作后,得到的新状态的ab的算法如下:
b = b xor r & ~a;
a = a xor r & ~b;
我们这里的ab就是上面的三种状态00,01,10的十位和各位,刚开始的时候,a和b都是0,当此时遇到数字1的时候,b更新为1,a更新为0,就是01的状态;再次遇到1的时候,b更新为0,a更新为1,就是10的状态;再次遇到1的时候,b更新为0,a更新为0,就是00的状态,相当于重置了;最后的结果保存在b中。代码如下;
//137 int singleNumber(vector<int>& nums) { int a=0,b=0; for(int i:nums) { b = (b ^ i) & (~a); a = (a ^ i) & (~b); } return b; }//137
标签:线性时间 二进制 http tor 操作 元素 解答 对应关系 tco
原文地址:https://www.cnblogs.com/2Bthebest1/p/10849829.html