码迷,mamicode.com
首页 > 其他好文 > 详细

数据结构 第6章 图 单元小结

时间:2019-05-19 10:09:23      阅读:120      评论:0      收藏:0      [点我收藏+]

标签:cti   数据   val   需要   是什么   ought to   lis   缺点   参考   

弄清楚图 本章重点

1.邻接矩阵:表示顶点之间相邻关系的矩阵

邻接矩阵表示法的特点:

优点:容易实现图的操作,如:求某顶点的度、判断顶点之间是否有边、找顶点的邻接点等等。

缺点:n个顶点需要n*n个单元存储边; 空间效率为O(n2)。对稀疏图而言尤其浪费空间。

2.邻接表

(1)图的链式存储结构

(2)图的邻接表存储表示

技术图片
 1 #define MVNum 100//最大顶点数
 2 
 3 typedef struct ArcNode//边结点
 4 
 5 {
 6 
 7 int adjvex;//该边所指向的顶点的位置
 8 
 9 struct ArcNode *nextarc;//指向下一条边的指针
10 
11 OtherInfo info;//和边相关的信息
12 
13 }ArcNode;
14 
15 typedef struct VNode//顶点信息
16 
17 {
18 
19 VerTexType data;
20 
21 ArcNode *firstarc;//指向第一条依附于边的指针 
22 
23 }VNode,AdjList[MVNum];//AdjList表示邻接表类型
24 
25 typedef struct
26 
27 {
28 
29 VerTexType vexs[MVNum]; //顶点表
30 
31 ArcType arcs[MVNum][MVNum]; //邻接矩阵
32 
33 int vexnum,arcnum; //图的当前点数和边数
34 
35 }AMGraph;
链式存储结构

3.图的遍历

图的遍历:从图中某个顶点出发游历图,访遍图中其余顶点,并且使图中的每个顶点仅被访问一次的过程。

!!!深搜和广搜

DFS:从图中某个顶点V0 出发,访问此顶点,然后依次从V0的各个未被访问的邻接点出发深度优先搜索遍历图,直至图中所有和V0有路径相通的顶点都被访问到

重点:(1)递归过程(2)为了区别顶点是否被访问,附设访问标志数组visited[n],其初值为“false”,一旦某个顶点被访问,则其相应的置被赋为“true”

BFS:在访问了起始点v之后,依次访问 v 的邻接点; 然后再依次访问这些顶点中未被访问过的邻接点; 直到所有顶点都被访问过为止。

重点:(1)分层搜索,不是递归(2)①从图中某个顶点v出发,访问v,并置visited[v]的值为true,然后将v 进队。② 只要队列不空,则重复下述处理: (1)队头顶点u出队。 (2)依次检查u的所有邻接点w,如果visited[w]的值为false,则访问w,并置visited[w]的值为true,然后将w 进队。

列出连通图

技术图片
  1 #include<iostream>
  2 #include<queue>
  3 
  4 using namespace std;
  5 
  6 #define MAXNUM 15
  7 bool check[MAXNUM] = {false};
  8 
  9 //建立邻接矩阵//Create Graph
 10 int G[MAXNUM][MAXNUM] = {0};
 11 int N,E;//N为顶点数,E为边数
 12 
 13 void DFS(int );
 14 int BFS(int );
 15 void ListComponentsDFS();
 16 void ListComponentsBFS();
 17 void isvisited();
 18 void BuildGraph();
 19 
 20 int main()
 21 {
 22     //建图
 23     BuildGraph();
 24     //DFS遍历连通集
 25     ListComponentsDFS();
 26     isvisited();
 27     //BFS遍历连通集
 28     ListComponentsBFS();
 29     return 0; 
 30 }
 31 
 32 
 33 void BuildGraph()
 34 {
 35     int i,j;
 36     int v1,v2;//每一行的顶点名称
 37     
 38     cin >> N >> E;//N是顶点数,E是边数 
 39     
 40     for(i = 0;i< E;i++)//每行输出一个连通集 
 41     {
 42         cin >> v1 >> v2;//InsertEdge
 43         G[v1][v2] = 1;//联通 置为1
 44         G[v2][v1] = 1;
 45         
 46      } 
 47  } 
 48  
 49 //DFS
 50 void DFS(int v)
 51 {
 52     check[v] = true;//已被访问置为true
 53     cout << v <<" ";
 54     for(int i=0;i<N;i++)
 55     {
 56         if(G[v][i] && !check[i])//如果联通且该点没有被访问过
 57         {
 58             DFS(i); 
 59      } 
 60  } 
 61  
 62 }
 63  
 64 void ListComponentsDFS()
 65 {
 66     int i;
 67     for(i=0;i<N;i++)
 68     {
 69         if(!check[i])
 70         {
 71             cout <<"{ ";
 72             DFS(i);
 73             cout << "}" << endl;
 74         }
 75     }
 76  } 
 77  
 78 //初始化visited
 79 void isvisited()
 80 {
 81     for(int i=0;i<N;i++)
 82     {
 83         check[i] = false;
 84     }
 85  } 
 86  
 87 //BFS
 88 int BFS(int v)
 89 {//队列
 90     queue <int> q;
 91     q.push(v);
 92     int x;
 93     check[v] = true;
 94     while(!q.empty())
 95     {
 96         x = q.front();//x本身被访问过
 97         q.pop();
 98         cout << x << " ";
 99         for(int i=0;i<N;i++)
100         {
101             if(!check[i]&&G[x][i]){
102                 check[i] = true;
103                 q.push(i);
104             } 
105          } 
106       }  
107  } 
108  
109  
110 void ListComponentsBFS()
111 {
112     int i;
113     for(i = 0;i<N;i++)
114     {
115         if(!check[i])
116         {
117             cout <<"{ ";
118             BFS(i);
119             cout << "}" <<endl;
120         }
121     }
122 }
列出连通图 完整代码

1.列出连通图的思路:

①先将连通图的构造出来

技术图片
 1 void BuildGraph()
 2 {
 3     int i,j;
 4     int v1,v2;//每一行的顶点名称
 5     
 6     cin >> N >> E;
 7     
 8     for(i = 0;i< E;i++)
 9     {
10         cin >> v1 >> v2;//InsertEdge
11         G[v1][v2] = 1;//联通 置为1
12         G[v2][v1] = 1;
13         
14      } 
15  } 
BuildGraph

技术图片

②先是DFS

技术图片
 1 void DFS(int v)
 2 {
 3     check[v] = true;//已被访问置为true
 4     cout << v <<" ";
 5     for(int i=0;i<N;i++)
 6     {
 7         if(G[v][i] && !check[i])//如果联通且该点没有被访问过
 8         {
 9             DFS(i); 
10      } 
11  } 
12  
13 }
14  
15 void ListComponentsDFS()
16 {
17     int i;
18     for(i=0;i<N;i++)
19     {
20         if(!check[i])
21         {
22             cout <<"{ ";
23             DFS(i);
24             cout << "}" << endl;
25         }
26     }
27  } 
28  
DFS

ListComponentsDFS() :用for循环判断结点是否被访问过,若被访问了

DFS:则是用for循环判断结点之间是否连通,并且输出连通的结点

 技术图片

③isvisited

技术图片
1 void isvisited()
2 {
3     for(int i=0;i<N;i++)
4     {
5         check[i] = false;
6     }
7  } 
8  
isvisited()

因为之后要用BFS再进行一次遍历,所以要将之前置为访问过的全部置为未被访问的,这一步还挺关键的

④最后BFS

其实这个地方跟上一章的树有点相似,是用了队列的方法,将头元素入队又出队

技术图片
 1 int BFS(int v)
 2 {//队列
 3     queue <int> q;
 4     q.push(v);
 5     int x;
 6     check[v] = true;
 7     while(!q.empty())
 8     {
 9         x = q.front();//x本身被访问过
10         q.pop();
11         cout << x << " ";
12         for(int i=0;i<N;i++)
13         {
14             if(!check[i]&&G[x][i]){
15                 check[i] = true;
16                 q.push(i);
17             } 
18          } 
19       }  
20  } 
21  
22  
23 void ListComponentsBFS()
24 {
25     int i;
26     for(i = 0;i<N;i++)
27     {
28         if(!check[i])
29         {
30             cout <<"{ ";
31             BFS(i);
32             cout << "}" <<endl;
33         }
34     }
35 }
BFS

 技术图片

 遇到的困难:

在这次的列出连通图中遇到困难有的①“void value not ignored as it ought to be”刚开始我不知道这句话是什么意思我就上网百度了一下,后面发现是因为在BFS函数中本来我是定义为void的,但是后来我又在后面对它了值,最后需要输出队头元素,所以我就将其改成了int类型就搞定了

②“a function-definition is not allowed here before ‘{‘ token”这个问题就是括号没有匹配对的问题 只要细心一点就可以检查出来了,但是刚开始看到function-definition is not allowed 我以为是我没有申明函数,就将main函数和其他函数的位置调换了一下,又在前面申明了函数,但是后来发现还是不行,就开始从{这个问题下手,终于找到了问题所在

③遇到最最最大的困难就是BFS和DFS的区别

刚开始我没有弄清楚BFS和DFS的概念,在画BFS的输出表示时,我觉得很奇怪因为按我的想法是输出{0 1 7 4 2}因为我认为7在4之前入队,是遍历完0的所有连接点再遍历1的连接点,所以7比4先入队

我甚至画了一张图技术图片但是是错误的,

后来我明白了,遍历了0的一个连接点后,再接着遍历1 的连接点,所以7在4 之后入队,正确的应该是这样的

技术图片

所以我们一定要弄清楚概念:深搜:一个节点的所有邻接点都访问完了之后,再访问下一个邻接点

广搜:一个节点的一个邻接点访问完后,就可访问下一个邻接点

目标完成情况:

1.上次是希望pta上的题能够在ddl前比较久的时间完成,这次是做到了,但是我觉得不是很好,因为其实这一章图我觉得很难,我有些懵讲真的,所以这章的两道编程题我都是在网上搜到答案后,搞懂,然后改了一些方法写的,特别是列出连通图的BFS那个地方,网上大部分方法是构造了一个叫quene的数组,来进行队列的功能,但是我觉得上章老师教的方法queue<int>q很好,所以我就改了这部分,用了这个方法来写。

2.下次的目标:我觉得老是从网上参考现有程序这样对自己的能力可能提升不够,希望下次的编程题能够先有自己的思路,而不是急着在网上在答案,来看别人的思路,而是真的能够将自己的思路写成代码实现

 PS:这次我改了一下图片的格式,不知道会不会清楚一点,希望能够比上次有进步啦~

数据结构 第6章 图 单元小结

标签:cti   数据   val   需要   是什么   ought to   lis   缺点   参考   

原文地址:https://www.cnblogs.com/snowlxy/p/10886829.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!