标签:integer 理论 补码 循环 期望 log dash 表示 等等
https://blog.csdn.net/leonliu06/article/details/78685197
文首
我们都知道负数在计算机中是以补码(忘了补码定义的戳这里)表示的,那为什么呢?本文尝试了解补码的原理,而要想理解它,首先得理解算术中“模”的概念。所以首先看一下什么是模,然后通过一个小例子来理解补码。
1 模(Modulo)
1.1 什么是模数
In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers “wrap around” upon reaching a certain value—the modulus (plural moduli).
1.1.1 理解
模是指一个计量系统的计数范围。如时钟等。计算机也是一个计算器,它也是有一个计量范围,即都存在一个“模”。
如时钟的计量范围是0~11,模 = 12。
32位计算机的计量范围是2^32,模 = 2^32。
“模”是计量器产生“溢出”的量,它的值在计量器上表示不出来,计量器上只能表示出模的余数,如12的余数有0,1,2,3,4,5,6,7,8,9,10,11。
1.2 补数
假设当前时针指向11点,而准确时间是8点,调整时间可有以下两种拨法:
一种是倒拨3小时,即:11-3=8
另一种是顺拨9小时:11+9=12+8=8
在以模为12的系统中,加9和减3效果是一样的,因此凡是减3运算,都可以用加9来代替。对“模”12而言,9和3互为补数(二者相加等于模)。所以我们可以得出一个结论,即在有模的计量系统中,减一个数等于加上它的补数,从而实现将减法运算转化为加法运算的目的。
1.3 再谈“模”
从上面的化减法为加法,以及所谓的溢出等等可以看到,“模”可以说就是一个太极,阴阳转化,周而复始,无始无终,循环往复。
2 补码原理
计算机上的补码就是算术里的补数。
设我们有一个 4 位的计算机,则其计量范围即模是
2^4 = 16,所以其能够表示的范围是0~15,现在以计算 5 - 3为例,我们知道在计算机中,加法器实现最简单,所以很多运算最终都要转为加法运算,因此5-3就要转化为加法:
1 # 按以上理论,减一个数等于加上它的补数,所以 2 5 - 3 3 # 等价于 4 5 + (16 - 3) // 算术运算单元将减法转化为加法 5 # 用二进制表示则为: 6 0101 + (10000 - 0011) 7 # 等价于 8 0101 + ((1 + 1111) - 0011) 9 # 等价于 10 0101 + (1 + (1111 - 0011)) 11 # 等价于 12 0101 + (1 + 1100) // 括号内是3(0011)的反码+1,正是补码的定义 13 # 等价于 14 0101 + 1101 15 # 所以从这里可以得到 16 -3 = 1101 17 # 即 `-3` 在计算机中的二进制表示为 `1101`,正是“ -3 的正值 3(`0011`)的补码(`1101`)”。 18 # 最后一步 0101 + 1101 等于 19 10010
因为我们的计算机是 4 位的,第一位“溢出”了,所以我们只保存了 4 位,即 0010,而当计算机去读取时这正是我们所期望的 2!!叹为观止吧,天才般的设计!感恩伏羲、莱布尼兹和冯诺依曼!
文末
一阴一阳之谓道。万事万物,阴阳转化,周而复始,无始无终,循环往复。
标签:integer 理论 补码 循环 期望 log dash 表示 等等
原文地址:https://www.cnblogs.com/linkenpark/p/10888491.html