标签:-- 平衡 获得 height 算法 contains print new 搜索
import java.util.ArrayList; public class AVLTree<K extends Comparable<K>, V> { private class Node{ public K key; public V value; public Node left, right; public int height; public Node(K key, V value){ this.key = key; this.value = value; left = null; right = null; height = 1; } } private Node root; private int size; public AVLTree(){ root = null; size = 0; } public int getSize(){ return size; } public boolean isEmpty(){ return size == 0; } // 判断该二叉树是否是一棵二分搜索树 public boolean isBST() { ArrayList<K> keys = new ArrayList<>(); inOrder(root, keys); for(int i = 1; i < keys.size(); ++ i) { if(keys.get(i - 1).compareTo(keys.get(i)) > 0) { return false; } } return true; } private void inOrder(Node node, ArrayList<K> keys) { if(node == null) { return ; } inOrder(node.left, keys); keys.add(node.key); inOrder(node.right, keys); } // 判断该二叉树是否是一棵平衡二叉树 public boolean isBalanced() { return isBalanced(root); } // 判断以node为根的二叉树是否是一棵平衡二叉树, 递归算法 private boolean isBalanced(Node node) { if(node == null) { return true; } int balanceFactor = getBalanceFactor(node); if(Math.abs(balanceFactor) > 1) { return false; } return isBalanced(node.left) && isBalanced(node.right); } // 获得结点node的高度 private int getHeight(Node node) { if(node == null) { return 0; } return node.height; } // 获得结点node的平衡因子 private int getBalanceFactor(Node node) { if(node == null) { return 0; } return getHeight(node.left) - getHeight(node.right); } private Node rightRoate(Node y) { Node x = y.left; Node T3 = x.right; // 向右旋转过程 x.right = y; y.left = T3; // 更新height y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1; x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1; return x; } private Node leftRoate(Node y) { Node x = y.right; Node T2 = x.left; // 向左旋转过程 x.left = y; y.right = T2; // 更新height y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1; x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1; return x; } // 向二分搜索树中添加新的元素(key, value) public void add(K key, V value){ root = add(root, key, value); } // 向以node为根的二分搜索树中插入元素(key, value),递归算法 // 返回插入新节点后二分搜索树的根 private Node add(Node node, K key, V value){ if(node == null){ size ++; return new Node(key, value); } if(key.compareTo(node.key) < 0) node.left = add(node.left, key, value); else if(key.compareTo(node.key) > 0) node.right = add(node.right, key, value); else // key.compareTo(node.key) == 0 node.value = value; // 更新height node.height = 1 + Math.max(getHeight(node.left), getHeight(node.right)); // 计算平衡因子 int balanceFactor = getBalanceFactor(node); // if(Math.abs(balanceFactor) > 1) { // System.out.println("unbalanced : " + balanceFactor); // } // 平衡维护 // LL if(balanceFactor > 1 && getBalanceFactor(node.left) >= 0) { return rightRoate(node); } // RR if(balanceFactor < -1 && getBalanceFactor(node.right) <= 0) { return leftRoate(node); } // LR if(balanceFactor > 1 && getBalanceFactor(node.left) < 0) { node.left = leftRoate(node.left); return rightRoate(node); } // RL if(balanceFactor < -1 && getBalanceFactor(node.right) > 0) { node.right = rightRoate(node.right); return leftRoate(node); } return node; } // 返回以node为根节点的二分搜索树中,key所在的节点 private Node getNode(Node node, K key){ if(node == null) return null; if(key.equals(node.key)) return node; else if(key.compareTo(node.key) < 0) return getNode(node.left, key); else // if(key.compareTo(node.key) > 0) return getNode(node.right, key); } public boolean contains(K key){ return getNode(root, key) != null; } public V get(K key){ Node node = getNode(root, key); return node == null ? null : node.value; } public void set(K key, V newValue){ Node node = getNode(root, key); if(node == null) throw new IllegalArgumentException(key + " doesn‘t exist!"); node.value = newValue; } // 返回以node为根的二分搜索树的最小值所在的节点 private Node minimum(Node node){ if(node.left == null) return node; return minimum(node.left); } // 删除掉以node为根的二分搜索树中的最小节点 // 返回删除节点后新的二分搜索树的根 private Node removeMin(Node node){ if(node.left == null){ Node rightNode = node.right; node.right = null; size --; return rightNode; } node.left = removeMin(node.left); return node; } // 从二分搜索树中删除键为key的节点 public V remove(K key){ Node node = getNode(root, key); if(node != null){ root = remove(root, key); return node.value; } return null; } private Node remove(Node node, K key){ if( node == null ) return null; Node retNode; if( key.compareTo(node.key) < 0 ){ node.left = remove(node.left , key); retNode = node; } else if(key.compareTo(node.key) > 0 ){ node.right = remove(node.right, key); retNode = node; } else{ // key.compareTo(node.key) == 0 // 待删除节点左子树为空的情况 if(node.left == null){ Node rightNode = node.right; node.right = null; size --; retNode = rightNode; } // 待删除节点右子树为空的情况 else if(node.right == null){ Node leftNode = node.left; node.left = null; size --; retNode = leftNode; } else { // 待删除节点左右子树均不为空的情况 // 找到比待删除节点大的最小节点, 即待删除节点右子树的最小节点 // 用这个节点顶替待删除节点的位置 Node successor = minimum(node.right); successor.right = remove(node.right, successor.key); successor.left = node.left; node.left = node.right = null; retNode = successor; } } if(retNode == null) { return null; } // 更新height retNode.height = 1 + Math.max(getHeight(retNode.left), getHeight(retNode.right)); // 计算平衡因子 int balanceFactor = getBalanceFactor(retNode); // if(Math.abs(balanceFactor) > 1) { // System.out.println("unbalanced : " + balanceFactor); // } // 平衡维护 // LL if(balanceFactor > 1 && getBalanceFactor(retNode.left) >= 0) { return rightRoate(retNode); } // RR if(balanceFactor < -1 && getBalanceFactor(retNode.right) <= 0) { return leftRoate(retNode); } // LR if(balanceFactor > 1 && getBalanceFactor(retNode.left) < 0) { retNode.left = leftRoate(retNode.left); return rightRoate(retNode); } // RL if(balanceFactor < -1 && getBalanceFactor(retNode.right) > 0) { retNode.right = rightRoate(retNode.right); return leftRoate(retNode); } return retNode; } public static void main(String[] args){ System.out.println("Pride and Prejudice"); ArrayList<String> words = new ArrayList<>(); if(FileOperation.readFile("pride-and-prejudice.txt", words)) { System.out.println("Total words: " + words.size()); AVLTree<String, Integer> map = new AVLTree<>(); for (String word : words) { if (map.contains(word)) map.set(word, map.get(word) + 1); else map.add(word, 1); } System.out.println("Total different words: " + map.getSize()); System.out.println("Frequency of PRIDE: " + map.get("pride")); System.out.println("Frequency of PREJUDICE: " + map.get("prejudice")); System.out.println("is BST : " + map.isBST()); System.out.println("is Balanced : " + map.isBalanced()); for(String word : words) { map.remove(word); if(!map.isBST() || !map.isBalanced()) { throw new RuntimeException("ERROR"); } } } System.out.println(); } }
标签:-- 平衡 获得 height 算法 contains print new 搜索
原文地址:https://www.cnblogs.com/mjn1/p/10902182.html