码迷,mamicode.com
首页 > 其他好文 > 详细

AVLTree

时间:2019-05-21 21:10:09      阅读:117      评论:0      收藏:0      [点我收藏+]

标签:--   平衡   获得   height   算法   contains   print   new   搜索   

import java.util.ArrayList;

public class AVLTree<K extends Comparable<K>, V> {

    private class Node{
        public K key;
        public V value;
        public Node left, right;
        public int height;

        public Node(K key, V value){
            this.key = key;
            this.value = value;
            left = null;
            right = null;
            height = 1;
        }
    }

    private Node root;
    private int size;

    public AVLTree(){
        root = null;
        size = 0;
    }

    public int getSize(){
        return size;
    }

    public boolean isEmpty(){
        return size == 0;
    }
    
    // 判断该二叉树是否是一棵二分搜索树
    public boolean isBST() {
    	
    	ArrayList<K> keys = new ArrayList<>();
    	inOrder(root, keys);
    	for(int i = 1; i < keys.size(); ++ i) {
    		if(keys.get(i - 1).compareTo(keys.get(i)) > 0) {
    			return false;
    		}
    	}
    	return true;
    }
    
    private void inOrder(Node node, ArrayList<K> keys) {
    	if(node == null) {
    		return ;
    	}
    	inOrder(node.left, keys);
    	keys.add(node.key);
    	inOrder(node.right, keys);
    }
    
    // 判断该二叉树是否是一棵平衡二叉树
    public boolean isBalanced() {
    	return isBalanced(root);
    }
    
    // 判断以node为根的二叉树是否是一棵平衡二叉树, 递归算法
    private boolean isBalanced(Node node) {
    	
    	if(node == null) {
    		return true;
    	}
    	
    	int balanceFactor = getBalanceFactor(node);
    	if(Math.abs(balanceFactor) > 1) {
    		return false;
    	}
    	
    	return isBalanced(node.left) && isBalanced(node.right);
    }
    
    // 获得结点node的高度
    private int getHeight(Node node) {
    	if(node == null) {
    		return 0;
    	}
    	return node.height;
    }
    
    // 获得结点node的平衡因子
    private int getBalanceFactor(Node node) {
    	if(node == null) {
    		return 0;
    	}
    	
    	return getHeight(node.left) - getHeight(node.right);
    }
    
    private Node rightRoate(Node y) {
    	
    	Node x = y.left;
    	Node T3 = x.right;
    	
    	// 向右旋转过程
    	x.right = y;
    	y.left = T3;
    	
    	// 更新height
    	y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
    	x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;
    	
    	return x;
    }
    
    private Node leftRoate(Node y) {
    	
    	Node x = y.right;
    	Node T2 = x.left;
    	
    	// 向左旋转过程
    	x.left = y;
    	y.right = T2;
    	
    	// 更新height
    	y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
    	x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;
    	
    	return x;
    }

    // 向二分搜索树中添加新的元素(key, value)
    public void add(K key, V value){
        root = add(root, key, value);
    }

    // 向以node为根的二分搜索树中插入元素(key, value),递归算法
    // 返回插入新节点后二分搜索树的根
    private Node add(Node node, K key, V value){

        if(node == null){
            size ++;
            return new Node(key, value);
        }

        if(key.compareTo(node.key) < 0)
            node.left = add(node.left, key, value);
        else if(key.compareTo(node.key) > 0)
            node.right = add(node.right, key, value);
        else // key.compareTo(node.key) == 0
            node.value = value;
        
        // 更新height
        node.height = 1 + Math.max(getHeight(node.left), getHeight(node.right));

        // 计算平衡因子
        int balanceFactor = getBalanceFactor(node);
//        if(Math.abs(balanceFactor) > 1) {
//        	System.out.println("unbalanced : " + balanceFactor);
//        }
        
        // 平衡维护
        // LL
        if(balanceFactor > 1 && getBalanceFactor(node.left) >= 0) {
        	return rightRoate(node);
        }
        
        // RR
        if(balanceFactor < -1 && getBalanceFactor(node.right) <= 0) {
        	return leftRoate(node);
        }
        
        // LR
        if(balanceFactor > 1 && getBalanceFactor(node.left) < 0) {
        	node.left = leftRoate(node.left);
        	return rightRoate(node);
        }
        
        // RL
        if(balanceFactor < -1 && getBalanceFactor(node.right) > 0) {
        	node.right = rightRoate(node.right);
        	return leftRoate(node);
        }
        
        return node;
    }

    // 返回以node为根节点的二分搜索树中,key所在的节点
    private Node getNode(Node node, K key){

        if(node == null)
            return null;

        if(key.equals(node.key))
            return node;
        else if(key.compareTo(node.key) < 0)
            return getNode(node.left, key);
        else // if(key.compareTo(node.key) > 0)
            return getNode(node.right, key);
    }

    public boolean contains(K key){
        return getNode(root, key) != null;
    }

    public V get(K key){

        Node node = getNode(root, key);
        return node == null ? null : node.value;
    }

    public void set(K key, V newValue){
        Node node = getNode(root, key);
        if(node == null)
            throw new IllegalArgumentException(key + " doesn‘t exist!");

        node.value = newValue;
    }

    // 返回以node为根的二分搜索树的最小值所在的节点
    private Node minimum(Node node){
        if(node.left == null)
            return node;
        return minimum(node.left);
    }

    // 删除掉以node为根的二分搜索树中的最小节点
    // 返回删除节点后新的二分搜索树的根
    private Node removeMin(Node node){

        if(node.left == null){
            Node rightNode = node.right;
            node.right = null;
            size --;
            return rightNode;
        }

        node.left = removeMin(node.left);
        return node;
    }

    // 从二分搜索树中删除键为key的节点
    public V remove(K key){

        Node node = getNode(root, key);
        if(node != null){
            root = remove(root, key);
            return node.value;
        }
        return null;
    }

    private Node remove(Node node, K key){

        if( node == null )
            return null;

        Node retNode;
        if( key.compareTo(node.key) < 0 ){
            node.left = remove(node.left , key);
            retNode = node;
        }
        else if(key.compareTo(node.key) > 0 ){
            node.right = remove(node.right, key);
            retNode = node;
        }
        else{   // key.compareTo(node.key) == 0

            // 待删除节点左子树为空的情况
            if(node.left == null){
                Node rightNode = node.right;
                node.right = null;
                size --;
                retNode = rightNode;
            }

            // 待删除节点右子树为空的情况
            else if(node.right == null){
                Node leftNode = node.left;
                node.left = null;
                size --;
                retNode = leftNode;
            }

            else { // 待删除节点左右子树均不为空的情况
	
	            // 找到比待删除节点大的最小节点, 即待删除节点右子树的最小节点
	            // 用这个节点顶替待删除节点的位置
	            Node successor = minimum(node.right);
	            successor.right = remove(node.right, successor.key);
	            successor.left = node.left;
	
	            node.left = node.right = null;
	
	            retNode = successor;
            }
        }
        
        if(retNode == null) {
        	return null;
        }
        
        // 更新height
        retNode.height = 1 + Math.max(getHeight(retNode.left), getHeight(retNode.right));

        // 计算平衡因子
        int balanceFactor = getBalanceFactor(retNode);
//        if(Math.abs(balanceFactor) > 1) {
//        	System.out.println("unbalanced : " + balanceFactor);
//        }
        
        // 平衡维护
        // LL
        if(balanceFactor > 1 && getBalanceFactor(retNode.left) >= 0) {
        	return rightRoate(retNode);
        }
        
        // RR
        if(balanceFactor < -1 && getBalanceFactor(retNode.right) <= 0) {
        	return leftRoate(retNode);
        }
        
        // LR
        if(balanceFactor > 1 && getBalanceFactor(retNode.left) < 0) {
        	retNode.left = leftRoate(retNode.left);
        	return rightRoate(retNode);
        }
        
        // RL
        if(balanceFactor < -1 && getBalanceFactor(retNode.right) > 0) {
        	retNode.right = rightRoate(retNode.right);
        	return leftRoate(retNode);
        }
        
        return retNode;
    }

    public static void main(String[] args){

        System.out.println("Pride and Prejudice");

        ArrayList<String> words = new ArrayList<>();
        if(FileOperation.readFile("pride-and-prejudice.txt", words)) {
            System.out.println("Total words: " + words.size());

            AVLTree<String, Integer> map = new AVLTree<>();
            for (String word : words) {
                if (map.contains(word))
                    map.set(word, map.get(word) + 1);
                else
                    map.add(word, 1);
            }

            System.out.println("Total different words: " + map.getSize());
            System.out.println("Frequency of PRIDE: " + map.get("pride"));
            System.out.println("Frequency of PREJUDICE: " + map.get("prejudice"));
            System.out.println("is BST : " + map.isBST());
            System.out.println("is Balanced : " + map.isBalanced());
        
            for(String word : words) {
            	map.remove(word);
            	if(!map.isBST() || !map.isBalanced()) {
            		throw new RuntimeException("ERROR");
            	}
            }
        }

        System.out.println();
    }
}

  

AVLTree

标签:--   平衡   获得   height   算法   contains   print   new   搜索   

原文地址:https://www.cnblogs.com/mjn1/p/10902182.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!