码迷,mamicode.com
首页 > 其他好文 > 详细

51nod 1052 最大M子段和

时间:2019-05-22 22:13:18      阅读:112      评论:0      收藏:0      [点我收藏+]

标签:+=   微软雅黑   mes   微软   cti   序列   代码   表示   个数   

N个整数组成的序列a[1],a[2],a[3],…,a[n],将这N个数划分为互不相交的M个子段,并且这M个子段的和是最大的。如果M >= N个数中正数的个数,那么输出所有正数的和。
例如:-2 11 -4 13 -5 6 -2,分为2段,11 -4 13一段,6一段,和为26。
 

输入

第1行:2个数N和M,中间用空格分隔。N为整数的个数,M为划分为多少段。(2 <= N , M <= 5000)
第2 - N+1行:N个整数 (-10^9 <= a[i] <= 10^9)

输出

输出这个最大和

输入样例

7 2
-2
11
-4
13
-5
6
-2

输出样例

26


最初想到的解法,是O(n^3)的,即开数组dp[n][m]显然空间爆了,然后数组降到一维,只存目前为止,分1~m段的最大和,以及记录最后一段到哪tag,然后对于dp[k],枚举dp[k] + sum[i] - sum[tag[k]],以及dp[k - 1] + sum[i] - sum[j](j >= tag[k - 1]),找最大值,并相应的修改tag。时间不少。
再仔细一想,实际上,就两种情况,即是否加上第i个数。那么实际上,开一个数组dp[m][2]即可,0表示不加第i个数,1表示加。
第一次代码:
#include <iostream>
#include <cstdlib>
#include <cstdio>
using namespace std;
typedef long long ll;
int n,m,d;
ll dp[5005];
ll sum[5005];
int tag[5005];
int main() {
    while(~scanf("%d%d",&n,&m)) {
        for(int i = 1;i <= n;i ++) {
            scanf("%d",&d);
            sum[i] = sum[i - 1] + d;
            for(int k = m;k >= 1;k --) {
                if(sum[i] - sum[tag[k]] >= 0) {
                    dp[k] += sum[i] - sum[tag[k]];
                    tag[k] = i;
                }
                for(int j = tag[k - 1];j <= i;j ++) {
                    if(dp[k - 1] + sum[i] - sum[j] > dp[k]) {
                        dp[k] = dp[k - 1] + sum[i] - sum[j];
                        tag[k] = i;
                    }
                }
            }
        }
        printf("%lld\n",dp[m]);
    }
    return 0;
}

第二次代码:

#include <iostream>
#include <cstdlib>
#include <cstdio>
using namespace std;
typedef long long ll;
int n,m,d;
ll dp[5005][2];
int main() {
    while(~scanf("%d%d",&n,&m)) {
        for(int i = 1;i <= n;i ++) {
            scanf("%d",&d);
            for(int k = m;k >= 1;k --) {
                dp[k][0] = max(dp[k][0],dp[k][1]);
                dp[k][1] = max(dp[k - 1][0],dp[k][1]) + d;
            }
        }
        printf("%lld\n",max(dp[m][0],dp[m][1]));
    }
    return 0;
}

 



51nod 1052 最大M子段和

标签:+=   微软雅黑   mes   微软   cti   序列   代码   表示   个数   

原文地址:https://www.cnblogs.com/8023spz/p/10908835.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!