标签:arm frame tail col creat 参考 pre log amp
非常方便由于计算某一个量的出现次数
下面代码中count列即每个年月的出现次数
1 test_sample[‘yearmonth‘] = test_sample[‘createtime‘].apply(fenge)
2 test_sample[‘jishu‘] = 1
3 tmp = test_sample.groupby([‘yearmonth‘])[‘jishu‘].agg([‘count‘]).reset_index()
groupby 中的as_index参数,默认为True,即将groupby中的列作为索引,
as_index = False时,使用原索引。
1 df = pd.DataFrame(data={‘books‘: [‘bk1‘, ‘bk1‘, ‘bk1‘, ‘bk2‘, ‘bk2‘, ‘bk3‘],
2 ‘price‘: [12, 12, 12, 15, 15, 17],
3 ‘title‘:[‘语文‘,‘语文‘,‘语文‘,‘数学‘,‘数学‘,‘英语‘],
4 ‘weight‘:[2,2,2,4,4,8]})
5 print(df)
6 df1 = df.groupby(‘books‘, as_index=True).sum() # sum()函数对其它是数字的列进行求和,字符串的列不会被输出
7 print(df1.columns)
8 print(type(df1)) # 此时的列只有‘price‘, ‘weight‘,books作为了索引列
9 print(df1)
10 df2 = df.groupby(‘books‘, as_index=False).sum()
11 print(df2.columns)
12 print(df2)
输出:
1 books price title weight
2 0 bk1 12 语文 2
3 1 bk1 12 语文 2
4 2 bk1 12 语文 2
5 3 bk2 15 数学 4
6 4 bk2 15 数学 4
7 5 bk3 17 英语 8
8 Index([‘price‘, ‘weight‘], dtype=‘object‘)
9 <class ‘pandas.core.frame.DataFrame‘>
10 price weight
11 books
12 bk1 36 6
13 bk2 30 8
14 bk3 17 8
15 Index([‘books‘, ‘price‘, ‘weight‘], dtype=‘object‘)
16 books price weight
17 0 bk1 36 6
18 1 bk2 30 8
19 2 bk3 17 8
参考: https://blog.csdn.net/cjsyr6wt/article/details/78200444
标签:arm frame tail col creat 参考 pre log amp
原文地址:https://www.cnblogs.com/xxswkl/p/10914973.html