码迷,mamicode.com
首页 > 其他好文 > 详细

Gym 101174D Dinner Bet(概率DP)题解

时间:2019-05-26 17:40:49      阅读:87      评论:0      收藏:0      [点我收藏+]

标签:pac   +=   span   clear   unsigned   思路   实现   sig   条件   

题意:n个球,两个人每人选C个球作为目标,然后放回。每回合有放回的拿出D个球,如果有目标球,就实现了这个目标,直到至少一个人实现了所有目标游戏结束。问结束回合的期望。误差1e-3以内。

思路:概率DP,因为终止条件是目标数,那么A的目标数B的目标数是一定要有的,但是AB之间可能有交集,那么我就把他单独列出来,我们设dp[t][i][j][k]表示第t回合a有i个独有的没涂b有j个独有的没涂有k个共有的没涂。那么我们可以得到状态转移方程:

$\LARGE{dp[t][ii][jj][kk] = dp[t - 1][i][j][k] * \frac{C^{i - ii}_{i}  *  C^{j - jj}_{j}  *  C^{k - kk}_{k}  *  C^{d - (i - ii) - (j - jj) - (k - kk)}_{n - i - j - k}}{C_{n}^{d}}}$

 代码:

#include<cmath>
#include<set>
#include<map>
#include<queue>
#include<cstdio>
#include<vector>
#include<cstring>
#include <iostream>
#include<algorithm>
#include<unordered_map>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 1e3 + 10;
const int M = maxn * 30;
const ull seed = 131;
const int INF = 0x3f3f3f3f;
const int MOD = 1e4 + 7;
double dp[maxn][15][15][15];
//第t回合a有i个没涂b有j个没涂有k个共有的没涂
double C[65][65];   //Cn m
int n, d, c, sz, cmn;
set<int> a;
void init(){
    C[0][0] = C[1][0] = C[1][1] = 1;
    for(int i = 2; i < 60; i++){
        for(int j = 0; j <= i; j++){
            C[i][j] = j == 0? 1 : C[i - 1][j - 1] + C[i - 1][j];
        }
    }
}
double solve(int i, int j, int k, int ii, int jj, int kk){
    //printf("%f\n", C[i][i - ii] * C[j][j - jj] * C[k][k - kk] * C[n - i - j - k][d - (i - ii) - (j - jj) - (k - kk)] / C[n][d]);
    return C[i][i - ii] * C[j][j - jj] * C[k][k - kk] * C[n - i - j - k][d - (i - ii) - (j - jj) - (k - kk)] / C[n][d];
}
int main(){
    init();
    scanf("%d%d%d", &n, &d, &c);
    a.clear();
    cmn = 0;
    for(int i = 1; i <= c; i++){
        int x;
        scanf("%d", &x);
        a.insert(x);
    }
    for(int i = 1; i <= c; i++){
        int x;
        scanf("%d", &x);
        if(a.count(x)) cmn++;
    }
    for(int t = 0; t <= 1000; t++)
        for(int i = 0; i <= c - cmn; i++)
            for(int j = 0; j <= c - cmn; j++)
                for(int k = 0; k <= cmn; k++)
                    dp[t][i][j][k] = 0;
    dp[0][c - cmn][c - cmn][cmn] = 1;

    for(int t = 1; t <= 1000; t++){
        for(int i = 0; i <= c - cmn; i++){
            for(int j = 0; j <= c - cmn; j++){
                for(int k = 0; k <= cmn; k++){
                    for(int ii = 0; ii <= i; ii++){
                        for(int jj = 0; jj <= j; jj++){
                            for(int kk = 0; kk <= k; kk++){
                                if(i - ii + j - jj + k - kk > d) continue;
                                if(i + j + k > n) continue;
                                if(i + k == 0 || j + k == 0) continue;
                                dp[t][ii][jj][kk] += dp[t - 1][i][j][k] * solve(i, j, k, ii, jj, kk);
                            }
                        }
                    }
                }
            }
        }
    }

    double ans = 0;
    for(int t = 1; t <= 1000; t++){
        for(int i = 1; i <= c - cmn; i++)
            ans += dp[t][i][0][0] * t + dp[t][0][i][0] * t;
        ans += dp[t][0][0][0] * t;
    }

    printf("%.5lf\n", ans);
    return 0;
}
/*
30 5 10
2 3 5 7 11 13 17 19 23 29
20 18 16 14 12 10 8 6 4 2

*/

 

Gym 101174D Dinner Bet(概率DP)题解

标签:pac   +=   span   clear   unsigned   思路   实现   sig   条件   

原文地址:https://www.cnblogs.com/KirinSB/p/10926715.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!