标签:队列 最大 icp turn 告诉 aaa close level type
0. Til the Cows Come Home POJ - 2387
完美的模板题
1 //#include<Windows.h> 2 #include<iostream> 3 #include<algorithm> 4 #include<cstring> 5 #include<cstdio> 6 #include<queue> 7 using namespace std; 8 const int MAX_V = 10005; 9 const int MAX_E = 20010; 10 const int inf = 0x3f3f3f3f; 11 12 struct ENode 13 { 14 int to; 15 int Next; 16 int w; 17 }; 18 ENode Edegs[MAX_E]; 19 int Head[MAX_V]; 20 int Dis[MAX_V]; 21 int tnt; 22 void Add_ENode(int u, int v, int w) 23 { 24 ++tnt; 25 Edegs[tnt].to = v; 26 Edegs[tnt].w = w; 27 Edegs[tnt].Next = Head[u]; 28 Head[u] = tnt; 29 ++tnt; 30 Edegs[tnt].to = u; 31 Edegs[tnt].w = w; 32 Edegs[tnt].Next = Head[v]; 33 Head[v] = tnt; 34 } 35 struct cmpx 36 { 37 bool operator () (int &a, int &b) const 38 { 39 return Dis[a] - Dis[b] > 0; 40 } 41 }; 42 43 void Dijkstra(int x) 44 { 45 priority_queue<int, vector<int>, cmpx> q; 46 memset(Dis, inf, sizeof(Dis)); 47 Dis[x] = 0; 48 q.push(x); 49 while (!q.empty()) 50 { 51 int u = q.top(); 52 q.pop(); 53 for (int k = Head[u]; k != -1; k= Edegs[k].Next) 54 { 55 int v = Edegs[k].to; 56 if (Dis[v] > Dis[u] + Edegs[k].w) 57 { 58 Dis[v] = Dis[u] + Edegs[k].w; 59 q.push(v); 60 } 61 } 62 } 63 } 64 65 int main() 66 { 67 int t, n; 68 cin >> t >> n; 69 tnt = -1; 70 int a, b, w; 71 memset(Head, -1, sizeof(Head)); 72 for (int i = 0; i < t; i++) 73 { 74 cin >> a >> b >> w; 75 Add_ENode(a, b, w); 76 } 77 Dijkstra(1); 78 cout << Dis[n] << endl; 79 // system("pause"); 80 return 0; 81 }
1. Frogger POJ - 2253
青蛙和石头。在池塘里有2只青蛙和n块石头,石头之间有一定距离,现在一只(腿短的)青蛙想要去找另一只青蛙yuehui;给出n块石头的坐标,1号为男主青蛙所在的石头,二号为目标石头,问它在所有可行路径中需要的单次最短跳跃距离是多少?
1 #include<iostream> 2 #include<algorithm> 3 #include<cstring> 4 #include<cstdio> 5 #include<queue> 6 #include<cmath> 7 using namespace std; 8 const int MAX_V= 210; 9 const double inf= 99999999999999999.0; 10 typedef pair<double, double> _pair; 11 _pair rock[MAX_V]; 12 double get_dis(_pair a, _pair b) 13 { 14 return sqrt(((a.first- b.first)* (a.first- b.first) )+ ((a.second- b.second)* (a.second- b.second) ) ); 15 } 16 double Dis[MAX_V]; 17 struct cmpx 18 { 19 bool operator() (int &a, int &b) const 20 { 21 return Dis[a]- Dis[b]> 0; 22 } 23 }; 24 int Front[MAX_V]; 25 void Dijkstra(int n) 26 { 27 priority_queue<int, vector<int>, cmpx> q; 28 fill(Dis, Dis+ n+ 1, inf); 29 //for(int i= 1; i<= n; i ++) printf("%f\n", Dis[2]); 30 Dis[1]= 0; 31 Front[1]= -1; 32 q.push(1); 33 while (! q.empty() ) 34 { 35 int u= q.top(); 36 q.pop(); 37 for (int i= 2; i<= n; i ++) 38 { 39 if (i== u) continue; 40 double detmp= get_dis(rock[u], rock[i]); 41 //printf("%f---%f---%f\n", Dis[u], detmp, Dis[i]); 42 if (Dis[i]> Dis[u]&& Dis[i]> detmp) 43 { 44 Dis[i]= max(Dis[u], detmp); 45 Front[i]= u; 46 q.push(i); 47 } 48 //printf("%f\n", Dis[i]); 49 } 50 } 51 } 52 int main() 53 { 54 int n; 55 int t= 0; 56 while (cin >> n) 57 { 58 ++ t; 59 if (n== 0) break; 60 for (int i= 1; i<= n; i ++) 61 { 62 cin >> rock[i].first >> rock[i].second; 63 } 64 //for(int i= 2; i<= n; i ++) printf("%f\n", get_dis(rock[1], rock[i])); 65 Dijkstra(n); 66 printf("Scenario #%d\n",t); 67 printf("Frog Distance = %.3f\n\n", Dis[2]); 68 double ans= -1.0; 69 /*for (int c= n; c!= 1; c= Front[c]) 70 { 71 double cnp= get_dis(rock[c], rock[Front[c]]); 72 ans= max(ans, cnp); 73 } 74 printf("Frog Distance = %.3f\n\n", ans);*/ 75 } 76 return 0; 77 }
2. Heavy Transportation POJ - 1797
城市中有N个路口,M个街道,每条街道都有最大承重限制;现在我们想要驾车从1号路口到N号路口,那么运输车所允许的最大重量是多少?
3. Travel (The 2019 ACM-ICPC China Shannxi Provincial Programming Contest M) /**计蒜客复现赛:点这里*/
星系中有n 个星球,编号从1 到N。星球之间有M个隧道相连,每个隧道都有一个长度。你有一个航天器,航天器有两个属性:传输距离d 和传输次数e 。航天器只能通过短于或等于其传输距离的通道;如果传输次数耗尽,则无法再使用航天器。航天器具有等级,lv0的航天器d 和e 都等于0,你可以给你的航天器升级,每次升级都会消耗c 点花费,给你的航天器提升dx和 ex点属性。现在,告诉你n,m,m条通道的信息,还有给你的航天器升级时的c,dx,ex。
Q: 你能求出从1 到N 的最小花费吗?
A: 把原本记录到达此点最短距离的Dis[] 变成 记录到达此点所需要飞行器最低等级的Dis_Level[],这样剩下的就是普通的Dijkstra了。
1 #include<algorithm> 2 #include<cstring> 3 #include<cstdio> 4 #include<queue> 5 using namespace std; 6 const int MAX_V= 100010; 7 const int MAX_E= 400010; 8 const int inf= 0x3f3f3f3f; 9 10 struct ENode 11 { 12 int to; 13 int w; 14 int Next; 15 }; 16 ENode edegs[MAX_E]; 17 int Head[MAX_V], tnt; 18 void Add_ENode(int a, int b, int w) 19 { 20 edegs[++ tnt].to= b; 21 edegs[tnt].w= w; 22 edegs[tnt].Next= Head[a]; 23 Head[a]= tnt; 24 edegs[++ tnt].to= a; 25 edegs[tnt].w= w; 26 edegs[tnt].Next= Head[b]; 27 Head[b]= tnt; 28 } 29 30 int Dis_Level[MAX_V]; //到每个点,所需要的飞船最小等级; 31 int deep[MAX_V]; //每个点bfs 的深度; 32 struct cmpx 33 { 34 bool operator() (int &a, int &b) const 35 { 36 return Dis_Level[a]- Dis_Level[b]> 0; 37 } 38 }; 39 void Dijkstra(int x, int _dis, int _cost) 40 { 41 /*x为起点, _dis是每次升级提升的传送距离, _cost是升级提升的传送次数;*/ 42 memset(Dis_Level, inf, sizeof(Dis_Level)); 43 memset(deep, inf, sizeof(deep)); 44 priority_queue<int, vector<int>, cmpx> q; 45 Dis_Level[x]= 0; //起点的飞行器等级为0; 46 deep[x]= 0; //起点深度为0; 47 q.push(x); 48 while (! q.empty()) 49 { 50 int u= q.top(); 51 q.pop(); 52 for (int k= Head[u]; k!= -1; k= edegs[k].Next) 53 { 54 int v= edegs[k].to; 55 int lev_tmp= Dis_Level[u]; 56 while (lev_tmp* _dis< edegs[k].w|| lev_tmp* _cost< deep[u]+ 1) 57 { 58 /*若当前的飞行器等级不能穿越此隧道,或传送次数已用完,则升级飞行器一次;*/ 59 lev_tmp ++; 60 } 61 if (lev_tmp< Dis_Level[v]) 62 { 63 /*如果此时的飞行器等级小与之前到达点v 的飞行器等级,则更新Dis_Level[v]*/ 64 Dis_Level[v]= lev_tmp; 65 deep[v]= deep[u]+ 1; //深度也要 +1; 66 q.push(v); //加入队列; 67 } 68 } 69 } 70 } 71 void into() 72 { 73 memset(Head, -1, sizeof(Head)); 74 tnt= -1; 75 } 76 77 int main() 78 { 79 int n, m; 80 int c, d, e; 81 int a, b ,w; 82 while (~ scanf("%d %d", &n, &m)) 83 { 84 scanf("%d %d %d", &c, &d, &e); 85 into(); 86 for (int i= 0;i< m;i ++) 87 { 88 scanf("%d %d %d", &a, &b, &w); 89 Add_ENode(a, b, w); 90 } 91 Dijkstra(1, d, e); 92 if (Dis_Level[n]== inf) printf("-1\n"); 93 else printf("%lld\n", (long long)Dis_Level[n]* c); 94 } 95 return 0; 96 }
标签:队列 最大 icp turn 告诉 aaa close level type
原文地址:https://www.cnblogs.com/Amaris-diana/p/10778340.html