标签:数据 lower 需要 主题 分布 ima 展示 支持 消息
在 Kafka 中,生产者写入消息、消费者读取消息的操作都是与 leader 副本进行交互的,从 而实现的是一种主写主读的生产消费模型。数据库、Redis 等都具备主写主读的功能,与此同时还支持主写从读的功能,主写从读也就是读写分离,为了与主写主读对应,这里就以主写从读来称呼。Kafka 并不支持主写从读,这是为什么呢?
从代码层面上来说,虽然增加了代码复杂度,但在 Kafka 中这种功能完全可以支持。对于 这个问题,我们可以从“收益点”这个角度来做具体分析。主写从读可以让从节点去分担主节 点的负载压力,预防主节点负载过重而从节点却空闲的情况发生。但是主写从读也有 2 个很明 显的缺点:
现实情况下,很多应用既可以忍受一定程度上的延时,也可以忍受一段时间内的数据不一 致的情况,那么对于这种情况,Kafka 是否有必要支持主写从读的功能呢?
主写从读可以均摊一定的负载却不能做到完全的负载均衡,比如对于数据写压力很大而读 压力很小的情况,从节点只能分摊很少的负载压力,而绝大多数压力还是在主节点上。而在 Kafka 中却可以达到很大程度上的负载均衡,而且这种均衡是在主写主读的架构上实现的。我们来看 一下 Kafka 的生产消费模型,如下图所示。
在 Kafka 集群中有 3 个分区,每个分区有 3 个副本,正好均匀地分布在 3个 broker 上,灰色阴影的代表 leader 副本,非灰色阴影的代表 follower 副本,虚线表示 follower 副本从 leader 副本上拉取消息。当生产者写入消息的时候都写入 leader 副本,对于图 8-23 中的 情形,每个 broker 都有消息从生产者流入;当消费者读取消息的时候也是从 leader 副本中读取 的,对于图 8-23 中的情形,每个 broker 都有消息流出到消费者。
我们很明显地可以看出,每个 broker 上的读写负载都是一样的,这就说明 Kafka 可以通过 主写主读实现主写从读实现不了的负载均衡。上图展示是一种理想的部署情况,有以下几种 情况(包含但不仅限于)会造成一定程度上的负载不均衡:
对此,我们可以做一些防范措施。针对第一种情况,在主题创建的时候尽可能使分区分配 得均衡,好在 Kafka 中相应的分配算法也是在极力地追求这一目标,如果是开发人员自定义的 分配,则需要注意这方面的内容。对于第二和第三种情况,主写从读也无法解决。对于第四种 情况,Kafka 提供了优先副本的选举来达到 leader 副本的均衡,与此同时,也可以配合相应的 监控、告警和运维平台来实现均衡的优化。
在实际应用中,配合监控、告警、运维相结合的生态平台,在绝大多数情况下 Kafka 都能 做到很大程度上的负载均衡。总的来说,Kafka 只支持主写主读有几个优点:可以简化代码的 实现逻辑,减少出错的可能;将负载粒度细化均摊,与主写从读相比,不仅负载效能更好,而 且对用户可控;没有延时的影响;在副本稳定的情况下,不会出现数据不一致的情况。为此, Kafka 又何必再去实现对它而言毫无收益的主写从读的功能呢?这一切都得益于 Kafka 优秀的 架构设计,从某种意义上来说,主写从读是由于设计上的缺陷而形成的权宜之计。
标签:数据 lower 需要 主题 分布 ima 展示 支持 消息
原文地址:https://www.cnblogs.com/CQqf2019/p/10947976.html