码迷,mamicode.com
首页 > 其他好文 > 详细

[程序员代码面试指南]递归和动态规划-排成一条线的纸牌博弈问题(DP)

时间:2019-05-31 00:44:26      阅读:127      评论:0      收藏:0      [点我收藏+]

标签:面试   顺序   ==   最大   代码   ati   接下来   时间   例子   

题目

给定一个整型数组arr,代表数值不同的纸牌排成一条线。玩家A和玩家B依次拿走每张纸牌,规定玩家A先拿,玩家B后拿,但是每个玩家每次只能拿走最左或最右的纸牌,玩家A和玩家B都绝顶聪明。请返回最后获胜者的分数。

例子

arr=[1,2,100,4]。
开始时玩家A只能拿走1或4。如果玩家A拿走1,则排列变为[2,100,4],接下来玩家B可以拿走2或4,然后继续轮到玩家A。如果开始时玩家A拿走4,则排列变为[1,2,100],接下来玩家B可以拿走1或100,然后继续轮到玩家A。玩家A作为绝顶聪明的人不会先拿4,因为拿了4之后玩家B将拿走100。所以玩家A会先拿1,让排列变为[2,100,4],接下来玩家B不管怎么选,100都会被玩家A拿走。玩家A会获胜,分数为101。所以返回101。
arr=[1,100,2]。
开始时玩家A不管拿1还是2,玩家B作为绝顶聪明的人,都会把100拿走。玩家B会获胜,分数为100。所以返回100。

题解

  • 两个dp数组 offensivePos[i,j]、 defensivePos[i,j] 分别表示对于arr[i,j],当前为先手能够获得的最大得分、当前为后手能够获得的最大的分。
  • 初始化:当i=j ,offensivePos[j][j]=arr[j] , defensivePos[i,j] =0.
  • 其他位置两个数组的转移方程见代码。
  • 遍历顺序是"从上往下从后往左"
  • 时间复杂度O(n^2) ,额外空间复杂度O(n^2).

代码

public class Main {
    public static void main(String args[]) {
        int[] arr= {1,2,100,4};
        int winNum=getWinNum(arr);
        System.out.println(winNum);
    }
    
    public static int getWinNum(int[] arr) {
        if(arr.length==0) {
            return 0;
        }
        int[][] offensivePos=new int[arr.length][arr.length];
        int[][] defensivePos=new int[arr.length][arr.length];
        for(int j=0;j<arr.length;++j) {//由上至下
            offensivePos[j][j]=arr[j];
            for(int i=j-1;i>=0;--i) {//由右至左
                offensivePos[i][j]=Math.max(arr[i]+defensivePos[i+1][j], arr[j]+defensivePos[i][j-1]);//
                defensivePos[i][j]=Math.min(offensivePos[i+1][j], offensivePos[i][j-1]);
            }
        }
        return Math.max(defensivePos[0][arr.length-1], offensivePos[0][arr.length-1]);
    }
}

[程序员代码面试指南]递归和动态规划-排成一条线的纸牌博弈问题(DP)

标签:面试   顺序   ==   最大   代码   ati   接下来   时间   例子   

原文地址:https://www.cnblogs.com/coding-gaga/p/10952212.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!