码迷,mamicode.com
首页 > 其他好文 > 详细

【leetcode】1039. Minimum Score Triangulation of Polygon

时间:2019-05-31 16:56:20      阅读:137      评论:0      收藏:0      [点我收藏+]

标签:app   mamicode   tput   style   img   ati   order   rod   http   

题目如下:

Given N, consider a convex N-sided polygon with vertices labelled A[0], A[i], ..., A[N-1] in clockwise order.

Suppose you triangulate the polygon into N-2 triangles.  For each triangle, the value of that triangle is the product of the labels of the vertices, and the total score of the triangulation is the sum of these values over all N-2 triangles in the triangulation.

Return the smallest possible total score that you can achieve with some triangulation of the polygon.

 

Example 1:

Input: [1,2,3]
Output: 6
Explanation: The polygon is already triangulated, and the score of the only triangle is 6.

Example 2:

技术图片

Input: [3,7,4,5]
Output: 144
Explanation: There are two triangulations, with possible scores: 3*7*5 + 4*5*7 = 245, or 3*4*5 + 3*4*7 = 144.  The minimum score 
is 144.

Example 3:

Input: [1,3,1,4,1,5]
Output: 13
Explanation: The minimum score triangulation has score 1*1*3 + 1*1*4 + 1*1*5 + 1*1*1 = 13.

 

Note:

  1. 3 <= A.length <= 50
  2. 1 <= A[i] <= 100

解题思路:这里推荐一本书《趣学算法》,里面有几个专题,讲解也非常有意思。本题对应书中的4.7章:最优三角剖分,解答如下图。

技术图片

代码如下:

class Solution(object):
    def minScoreTriangulation(self, A):
        """
        :type A: List[int]
        :rtype: int
        """
        dp = []
        for i in A:
            dp.append([0] * len(A))
        # dp[i][j] = dp[i][k] + dp[k+1][j] + A[i]+A[j]+A[k]
        for i in range(len(A)-3,-1,-1):
            for j in range(i+2,len(A)):
                for k in range(i+1,j):
                    if dp[i][j] == 0 or dp[i][j] > dp[i][k] + dp[k][j] + A[i]*A[j]*A[k]:
                        dp[i][j] = dp[i][k] + dp[k][j] + A[i]*A[j]*A[k]
        #print dp
        return dp[0][-1]

 

【leetcode】1039. Minimum Score Triangulation of Polygon

标签:app   mamicode   tput   style   img   ati   order   rod   http   

原文地址:https://www.cnblogs.com/seyjs/p/10955757.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!