标签:htm 相同 执行 rev rom 允许 span 通过 整数
判断一个整数是否是回文数。回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数。
示例 1:
输入: 121 输出: true
示例 2:
输入: -121 输出: false 解释: 从左向右读, 为 -121 。 从右向左读, 为 121- 。因此它不是一个回文数。
示例 3:
输入: 10 输出: false 解释: 从右向左读, 为 01 。因此它不是一个回文数。
进阶:
你能不将整数转为字符串来解决这个问题吗?
我的解答:
class Solution { public boolean isPalindrome(int x) { if (x < 0) { return false; } LinkedList<Integer> list = new LinkedList<>(); while (x >= 10) { list.add(x % 10); x = x / 10; } list.add(x); while (list.size() > 1) { if (!list.getFirst().equals(list.getLast())) { return false; } list.removeFirst(); list.removeLast(); } return true; } }
标准答案
思路
映入脑海的第一个想法是将数字转换为字符串,并检查字符串是否为回文。但是,这需要额外的非常量空间来创建问题描述中所不允许的字符串。
第二个想法是将数字本身反转,然后将反转后的数字与原始数字进行比较,如果它们是相同的,那么这个数字就是回文。 但是,如果反转后的数字大于 int.MAX,我们将遇到整数溢出问题。
按照第二个想法,为了避免数字反转可能导致的溢出问题,为什么不考虑只反转 int 数字的一半?毕竟,如果该数字是回文,其后半部分反转后应该与原始数字的前半部分相同。
例如,输入 1221
,我们可以将数字 “1221” 的后半部分从 “21” 反转为 “12”,并将其与前半部分 “12” 进行比较,因为二者相同,我们得知数字 1221
是回文。
让我们看看如何将这个想法转化为一个算法。
算法
首先,我们应该处理一些临界情况。所有负数都不可能是回文,例如:-123 不是回文,因为 -
不等于 3
。所以我们可以对所有负数返回 false。
现在,让我们来考虑如何反转后半部分的数字。 对于数字 1221
,如果执行 1221 % 10
,我们将得到最后一位数字 1
,要得到倒数第二位数字,我们可以先通过除以 10 把最后一位数字从 1221
中移除,1221 / 10 = 122
,再求出上一步结果除以 10 的余数,122 % 10 = 2
,就可以得到倒数第二位数字。如果我们把最后一位数字乘以 10,再加上倒数第二位数字,1 * 10 + 2 = 12
,就得到了我们想要的反转后的数字。如果继续这个过程,我们将得到更多位数的反转数字。
现在的问题是,我们如何知道反转数字的位数已经达到原始数字位数的一半?
我们将原始数字除以 10,然后给反转后的数字乘上 10,所以,当原始数字小于反转后的数字时,就意味着我们已经处理了一半位数的数字。
public class Solution { public bool IsPalindrome(int x) { // 特殊情况: // 如上所述,当 x < 0 时,x 不是回文数。 // 同样地,如果数字的最后一位是 0,为了使该数字为回文, // 则其第一位数字也应该是 0 // 只有 0 满足这一属性 if(x < 0 || (x % 10 == 0 && x != 0)) { return false; } int revertedNumber = 0; while(x > revertedNumber) { revertedNumber = revertedNumber * 10 + x % 10; x /= 10; } // 当数字长度为奇数时,我们可以通过 revertedNumber/10 去除处于中位的数字。 // 例如,当输入为 12321 时,在 while 循环的末尾我们可以得到 x = 12,revertedNumber = 123, // 由于处于中位的数字不影响回文(它总是与自己相等),所以我们可以简单地将其去除。 return x == revertedNumber || x == revertedNumber/10; } }
复杂度分析
标签:htm 相同 执行 rev rom 允许 span 通过 整数
原文地址:https://www.cnblogs.com/zhangqian27/p/10957815.html