码迷,mamicode.com
首页 > 其他好文 > 详细

TensorFlow——分布式的TensorFlow运行环境

时间:2019-06-01 21:06:45      阅读:183      评论:0      收藏:0      [点我收藏+]

标签:learn   字符串   restore   poc   分代   optimize   reduce   wait   range   

当我们在大型的数据集上面进行深度学习的训练时,往往需要大量的运行资源,而且还要花费大量时间才能完成训练。

1.分布式TensorFlow的角色与原理

在分布式的TensorFlow中的角色分配如下:

PS:作为分布式训练的服务端,等待各个终端(supervisors)来连接。

worker:在TensorFlow的代码注释中被称为终端(supervisors),作为分布式训练的计算资源终端。

chief supervisors:在众多的运算终端中必须选择一个作为主要的运算终端。该终端在运算终端中最先启动,它的功能是合并各个终端运算后的学习参数,将其保存或者载入。

每个具体的网络标识都是唯一的,即分布在不同IP的机器上(或者同一个机器的不同端口)。在实际的运行中,各个角色的网络构建部分代码必须100%的相同。三者的分工如下:

服务端作为一个多方协调者,等待各个运算终端来连接。

chief supervisors会在启动时同一管理全局的学习参数,进行初始化或者从模型载入。

其他的运算终端只是负责得到其对应的任务并进行计算,并不会保存检查点,用于TensorBoard可视化中的summary日志等任何参数信息。

在整个过程都是通过RPC协议来进行通信的。

2.分布部署TensorFlow的具体方法

配置过程中,首先建立一个server,在server中会将ps及所有worker的IP端口准备好。接着,使用tf.train.Supervisor中的managed_ssion来管理一个打开的session。session中只是负责运算,而通信协调的事情就都交给supervisor来管理了。

3.部署训练实例

下面开始实现一个分布式训练的网络模型,以线性回归为例,通过3个端口来建立3个终端,分别是一个ps,两个worker,实现TensorFlow的分布式运算。

1. 为每个角色添加IP地址和端口,创建sever,在一台机器上开3个不同的端口,分别代表PS,chief supervisor和worker。角色的名称用strjob_name表示,以ps为例,代码如下:

# 定义IP和端口
strps_hosts = localhost:1681
strworker_hosts = localhost:1682,localhost:1683

# 定义角色名称
strjob_name = ps
task_index = 0

# 将字符串转数组
ps_hosts = strps_hosts.split(,)
worker_hosts = strps_hosts.split(,)

cluster_spec = tf.train.ClusterSpec({ps: ps_hosts, worker: worker_hosts})

# 创建server
server = tf.train.Server({ps:ps_hosts, worker:worker_hosts}, job_name=strjob_name, task_index=task_index)

2为ps角色添加等待函数

ps角色使用server.join函数进行线程挂起,开始接受连续消息。

# ps角色使用join进行等待
if strjob_name == ps:
    print("wait")
    server.join()

3.创建网络的结构

与正常的程序不同,在创建网络结构时,使用tf.device函数将全部的节点都放在当前任务下。在tf.device函数中的任务是通过tf.train.replica_device_setter来指定的。在tf.train.replica_device_setter中使用worker_device来定义具体任务名称;使用cluster的配置来指定角色及对应的IP地址,从而实现管理整个任务下的图节点。代码如下:

with tf.device(tf.train.replica_device_setter(worker_device=/job:worker/task:%d%task_index,
                                              cluster=cluster_spec)):
    X = tf.placeholder(float)
    Y = tf.placeholder(float)
    # 模型参数
    w = tf.Variable(tf.random_normal([1]), name=weight)
    b = tf.Variable(tf.zeros([1]), name=bias)

    global_step = tf.train.get_or_create_global_step()   # 获取迭代次数

    z = tf.multiply(X, w) + b
    tf.summary(z, z)
    cost = tf.reduce_mean(tf.square(Y - z))
    tf.summary.scalar(loss_function, cost)
    learning_rate = 0.001

    optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost, global_step=global_step)

    saver = tf.train.Saver(max_to_keep=1)

    merged_summary_op = tf.summary.merge_all()  # 合并所有summary

    init = tf.global_variables_initializer()

4.创建Supercisor,管理session

在tf.train.Supervisor函数中,is_chief表明为是否为chief Supervisor角色,这里将task_index=0的worker设置成chief Supervisor。saver需要将保存检查点的saver对象传入。init_op表示使用初始化变量的函数。

training_epochs = 2000
display_step = 2

sv = tf.train.Supervisor(is_chief=(task_index == 0),# 0号为chief
                         logdir=log/spuer/,
                         init_op=init,
                         summary_op=None,
                         saver=saver,
                         global_step=global_step,
                         save_model_secs=5)

# 连接目标角色创建session
with sv.managed_session(saver.target) as sess:

5迭代训练

session中的内容与以前一样,直接迭代训练即可。由于使用了supervisor管理session,将使用sv.summary_computed函数来保存summary文件。

print(sess ok)
    print(global_step.eval(session=sess))
    
    for epoch in range(global_step.eval(session=sess), training_epochs*len(train_x)):
        for (x, y) in zip(train_x, train_y):
            _, epoch = sess.run([optimizer, global_step], feed_dict={X: x, Y: y})
            summary_str = sess.run(merged_summary_op, feed_dict={X: x, Y: y})
            sv.summary_computed(sess, summary_str, global_step=epoch)
            if epoch % display_step == 0:
                loss = sess.run(cost, feed_dict={X:train_x, Y:train_y})
                print("Epoch:", epoch+1, loss:, loss, W=, sess.run(w), w, b=, sess.run(b))
                
    print( finished )
    sv.saver.save(sess, log/linear/ + "sv.cpk", global_step=epoch)

sv.stop()

(1)在设置自动保存检查点文件后,手动保存仍然有效,

(2)在运行一半后,在运行supervisor时会自动载入模型的参数,不需要手动调用restore。

(3)在session中不需要进行初始化的操作。

6.建立worker文件

新建两个py文件,设置task_index分别为0和1,其他的部分和上述的代码相一致。

strjob_name = worker
task_index = 1
  
strjob_name = worker
task_index = 0

7.运行

我们分别启动写好的三个文件,在运行结果中,我们可以看到循环的次数不是连续的,显示结果中会有警告,这是因为在构建supervisor时没有填写local_init_op参数,该参数的含义是在创建worker实例时,初始化本地变量,上述代码中没有设置,系统会自动初始化,并给出警告提示。

分布运算的目的是为了提高整体运算速度,如果同步epoch的准确率需要牺牲总体运行速度为代价,自然很不合适。

在ps的文件中,它只是负责连接,并不参与运算。

 

TensorFlow——分布式的TensorFlow运行环境

标签:learn   字符串   restore   poc   分代   optimize   reduce   wait   range   

原文地址:https://www.cnblogs.com/baby-lily/p/10960828.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!